Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lien, Min-Yun | en_US |
dc.contributor.author | Kuo, Jyhmin | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2015-07-21T08:29:00Z | - |
dc.date.available | 2015-07-21T08:29:00Z | - |
dc.date.issued | 2015-02-01 | en_US |
dc.identifier.issn | 0020-0190 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.ipl.2014.09.013 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/124029 | - |
dc.description.abstract | For n > d >= 2, the generalized Kautz digraph G(K)(d, n) is defined by congruence equations as follows: V(G(K)(d, n)) = {0, 1, 2, . . . , n - 1} and A (G(K)( (d, n)) = {(x, y)vertical bar y equivalent to -dx - i (mod n), 1 <= i <= d}. A set of vertices of a graph whose removal leaves an acyclic graph is called a decycling set of the graph. The minimum size of a decycling set of a graph G is referred to as the decycling number of G. Let f(d, n) be the decycling number of the generalized Kautz digraph G(K)(d, n). In this paper, we study f (d, n) for all n >= d >= 2. As a consequence, we obtain the upper bound of f(d, n) as follows: f(d, n) <= (1/2 - d-1/2d(2))n + d/2(d - t + 5) - 2, where n equivalent to t (mod(d + 1)). (C) 2014 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Generalized Kautz digraph | en_US |
dc.subject | Interconnection networks | en_US |
dc.subject | Feedback vertex number | en_US |
dc.subject | Decycling number | en_US |
dc.title | On the decycling number of generalized Kautz digraphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ipl.2014.09.013 | en_US |
dc.identifier.journal | INFORMATION PROCESSING LETTERS | en_US |
dc.citation.volume | 115 | en_US |
dc.citation.spage | 209 | en_US |
dc.citation.epage | 211 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000346225300027 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |