Full metadata record
DC FieldValueLanguage
dc.contributor.authorLien, Min-Yunen_US
dc.contributor.authorKuo, Jyhminen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2015-07-21T08:29:00Z-
dc.date.available2015-07-21T08:29:00Z-
dc.date.issued2015-02-01en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2014.09.013en_US
dc.identifier.urihttp://hdl.handle.net/11536/124029-
dc.description.abstractFor n > d >= 2, the generalized Kautz digraph G(K)(d, n) is defined by congruence equations as follows: V(G(K)(d, n)) = {0, 1, 2, . . . , n - 1} and A (G(K)( (d, n)) = {(x, y)vertical bar y equivalent to -dx - i (mod n), 1 <= i <= d}. A set of vertices of a graph whose removal leaves an acyclic graph is called a decycling set of the graph. The minimum size of a decycling set of a graph G is referred to as the decycling number of G. Let f(d, n) be the decycling number of the generalized Kautz digraph G(K)(d, n). In this paper, we study f (d, n) for all n >= d >= 2. As a consequence, we obtain the upper bound of f(d, n) as follows: f(d, n) <= (1/2 - d-1/2d(2))n + d/2(d - t + 5) - 2, where n equivalent to t (mod(d + 1)). (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectGeneralized Kautz digraphen_US
dc.subjectInterconnection networksen_US
dc.subjectFeedback vertex numberen_US
dc.subjectDecycling numberen_US
dc.titleOn the decycling number of generalized Kautz digraphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2014.09.013en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume115en_US
dc.citation.spage209en_US
dc.citation.epage211en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000346225300027en_US
dc.citation.woscount0en_US
Appears in Collections:Articles