Full metadata record
DC FieldValueLanguage
dc.contributor.authorKanno, Manabuen_US
dc.contributor.authorIto, Yutaen_US
dc.contributor.authorShimakura, Noriyukien_US
dc.contributor.authorKoseki, Shiroen_US
dc.contributor.authorKono, Hirohikoen_US
dc.contributor.authorFujimura, Yuichien_US
dc.date.accessioned2015-07-21T08:28:50Z-
dc.date.available2015-07-21T08:28:50Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1463-9076en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c4cp04807een_US
dc.identifier.urihttp://hdl.handle.net/11536/124056-
dc.description.abstractWe theoretically investigated the mechanism of ultrafast nonradiative transition through conical intersections in photoexcited pyrazine by ab initio quantum dynamical calculations. This work was motivated by the recent theoretical and experimental studies that presented conflicting results: the former is the on-the-fly semiclassical surface hopping calculation combined with the time-dependent density functional theory, which showed that nonadiabatic transitions from the optically bright S-2 (B-1(2u), pi pi*) state to the optically dark S-3 ((1)A(u), n pi*) and S-4 (B-1(2g), n pi*) states take place predominantly at the initial stage of electronic relaxation [U. Werner et al., Chem. Phys., 2008, 349, 319]; the latter is the pump-probe photoelectron spectroscopic measurement, which reported the S2 lifetime (22 +/- 3 fs) of nonradiative decay to the almost dark S-1 (B-1(3u), n pi*) state [Y.-I. Suzuki et al., J. Chem. Phys., 2010, 132, 174302]. We constructed adiabatic and diabatic potential energy surfaces of these pi pi* and n pi* states using the multireference configuration interaction method and calculated their diabatic couplings within two-dimensional subspaces spanned by selected ground-state normal coordinates. Contrary to the surface hopping study, our nuclear wave packet simulations demonstrated that nonadiabatic transitions to the S-3 and S-4 states are so small that the conventional two-state (S-1 and S-2) picture is valid. Ultrafast internal conversion of pyrazine, which is deemed to proceed with a 22 fs lifetime, in fact consists of three consecutive steps: (i) the wave packet excited to the S-2 state travels toward the S-2-S-1 conical intersection in 10 fs, (ii) the nonadiabatic transition to the S-1 state progresses at a rapid rate corresponding to a transient lifetime of 7 fs, and (iii) intramolecular vibrational energy redistribution occurs in the S-1 state in about 80 fs after optical excitation. To verify this prediction, time-resolved experiments with a resolution of several fs or shorter are desirable.en_US
dc.language.isoen_USen_US
dc.titleAb initio quantum dynamical analysis of ultrafast nonradiative transitions via conical intersections in pyrazineen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/c4cp04807een_US
dc.identifier.journalPHYSICAL CHEMISTRY CHEMICAL PHYSICSen_US
dc.citation.volume17en_US
dc.citation.spage2012en_US
dc.citation.epage2024en_US
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000346473600056en_US
dc.citation.woscount1en_US
Appears in Collections:Articles