標題: | Compact Bis-Adduct Fullerenes and Additive-Assisted Morphological Optimization for Efficient Organic Photovoltaics |
作者: | Lai, Yun-Yu Liao, Ming-Hung Chen, Yen-Ting Cao, Fong-Yi Hsu, Chain-Shu Cheng, Yen-Ju 應用化學系 Department of Applied Chemistry |
關鍵字: | bis-adduct fullerenes;polymers;additive;morphology;aggregation;solar cells |
公開日期: | 26-Nov-2014 |
摘要: | Bis-adduct fullerenes surrounded by two insulating addends sterically attenuate intermolecular interaction and cause inferior electron transportation. In this research, we have designed and synthesized a new class of bis-adduct fullerene materials, methylphenylmethano-C-60 bis-adduct (MPC(60)BA), methylthienylmethano-C-60 bis-adduct (MTC(60)BA), methylphenylmethano-C-70 bis-adduct (MPC(70)BA), and methylthienylmethano-C-70 bis-adduct (MTC(70)BA), functionalized with two compact phenylmethylmethano and thienylmethylmethano addends via cyclopropyl linkages. These materials with much higher-lying lowest unoccupied molecular orbital (LUMO) energy levels successfully enhanced the V-oc values of the P3HT-based solar cell devices. The compact phenylmethylmethano and thienylmethylmethano addends to promote fullerene intermolecular interactions result in aggregation-induced phase separation as observed by the atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of the poly(3-hexylthiophene-2,5-diyl) (P3HT)/bis-adduct fullerene thin films. The device based on the P3HT/MTC(60)BA blend yielded a V-oc of 0.72 V, a J(sc) of 5.87 mA/cm(2), and a fill factor (FF) of 65.3%, resulting in a power conversion efficiency (PCE) of 2.76%. The unfavorable morphologies can be optimized by introducing a solvent additive to fine-tune the intermolecular interactions. 1-Chloronaphthalene (CN) having better ability to dissolve the bis-adduct fullerenes can homogeneously disperse the fullerene materials into the P3HT matrix. Consequently, the aggregated fullerene domains can be alleviated to reach a favorable morphology. With the assistance of CN additive, the P3HT/MTC(60)BA-based device exhibited enhanced characteristics (a V-oc of 0.78 V, a J(sc) of 9.04 mA/cm(2), and an FF of 69.8%), yielding a much higher PCE of 4.92%. More importantly, the additive-assisted morphological optimization is consistently effective to all four compact bis-adduct fullerenes regardless of the methylphenylmethano or methylthienylmethano scaffolds as well as C-60 or C-70 core structures. Through the extrinsic additive treatment, these bis-adduct fullerene materials with compact architectures show promise for high-performance polymer solar cells. |
URI: | http://dx.doi.org/10.1021/am505616x http://hdl.handle.net/11536/124122 |
ISSN: | 1944-8244 |
DOI: | 10.1021/am505616x |
期刊: | ACS APPLIED MATERIALS & INTERFACES |
Issue: | 22 |
起始頁: | 20102 |
結束頁: | 20109 |
Appears in Collections: | Articles |