Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, C. H.en_US
dc.contributor.authorLin, S. J.en_US
dc.contributor.authorYang, D. L.en_US
dc.contributor.authorPearn, W. L.en_US
dc.date.accessioned2015-07-21T08:29:13Z-
dc.date.available2015-07-21T08:29:13Z-
dc.date.issued2014-07-01en_US
dc.identifier.issn0090-3973en_US
dc.identifier.urihttp://dx.doi.org/10.1520/JTE20130080en_US
dc.identifier.urihttp://hdl.handle.net/11536/124172-
dc.description.abstractIn manufacturing quality control and operations management, the process yield plays an important role. The capability index C-pk provides a lower bound on the process yield under the assumption that the process characteristic is normally distributed. When the normality assumption is violated, we can transform the non-normal data into normal data by using an appropriate transformation approach. In this paper, we consider the Box-Cox transformation and compare two estimation methods including the maximum likelihood estimator (MLE) and the method of percentiles (MOP). The performance comparison is based on the coverage rate, the precision, and the accuracy of the process non-conformity percentage evaluation. For various sample sizes and various distributions, several figures are presented to compare these two methods.en_US
dc.language.isoen_USen_US
dc.subjectBox-Cox transformationen_US
dc.subjectcoverage rateen_US
dc.subjectnon-normal distributionen_US
dc.titleBox-Cox Transformation Approach for Evaluating Non-Normal Processes Capability Based on the C-pk Indexen_US
dc.typeArticleen_US
dc.identifier.doi10.1520/JTE20130080en_US
dc.identifier.journalJOURNAL OF TESTING AND EVALUATIONen_US
dc.citation.volume42en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000345756300009en_US
dc.citation.woscount0en_US
Appears in Collections:Articles