Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Ching-Minen_US
dc.contributor.authorYeh, Hund-Deren_US
dc.date.accessioned2015-07-21T08:28:48Z-
dc.date.available2015-07-21T08:28:48Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0017-467Xen_US
dc.identifier.urihttp://dx.doi.org/10.1111/gwat.12252en_US
dc.identifier.urihttp://hdl.handle.net/11536/124226-
dc.description.abstractFluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values.en_US
dc.language.isoen_USen_US
dc.titleInduced Groundwater Flux by Increases in the Aquifer\'s Total Stressen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/gwat.12252en_US
dc.identifier.journalGROUNDWATERen_US
dc.citation.volume53en_US
dc.citation.spage10en_US
dc.citation.epage16en_US
dc.contributor.department環境工程研究所zh_TW
dc.contributor.departmentInstitute of Environmental Engineeringen_US
dc.identifier.wosnumberWOS:000347981800003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles