Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Minquan | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Jiang, Jing | en_US |
dc.contributor.author | Lo, Yuan-Hsun | en_US |
dc.contributor.author | Miao, Ying | en_US |
dc.date.accessioned | 2015-07-21T08:28:44Z | - |
dc.date.available | 2015-07-21T08:28:44Z | - |
dc.date.issued | 2015-01-01 | en_US |
dc.identifier.issn | 0925-1022 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10623-013-9849-9 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/124234 | - |
dc.description.abstract | Let be a code of length over an alphabet of letters. The descendant code of is defined to be the set of words such that for all . is a -separable code if for any two distinct such that , , we always have . The study of separable codes is motivated by questions about multimedia fingerprinting for protecting copyrighted multimedia data. Let be the maximal possible size of such a separable code. In this paper, we provide an improved upper bound for by a graph theoretical approach, and a new lower bound for by deleting suitable points and lines from a projective plane, which coincides with the improved upper bound in some places. This corresponds to the bounds of maximum size of bipartite graphs with girth and a construction of such maximal bipartite graphs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Multimedia fingerprinting | en_US |
dc.subject | Separable code | en_US |
dc.subject | 4-Cycle free bipartite graph | en_US |
dc.subject | Zarankiewicz number | en_US |
dc.subject | Projective plane | en_US |
dc.title | New bounds on (2)over-bar-separable codes of length 2 | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10623-013-9849-9 | en_US |
dc.identifier.journal | DESIGNS CODES AND CRYPTOGRAPHY | en_US |
dc.citation.volume | 74 | en_US |
dc.citation.spage | 31 | en_US |
dc.citation.epage | 40 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000347692400003 | en_US |
dc.citation.woscount | 1 | en_US |
Appears in Collections: | Articles |