完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Minquanen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorJiang, Jingen_US
dc.contributor.authorLo, Yuan-Hsunen_US
dc.contributor.authorMiao, Yingen_US
dc.date.accessioned2015-07-21T08:28:44Z-
dc.date.available2015-07-21T08:28:44Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0925-1022en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10623-013-9849-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/124234-
dc.description.abstractLet be a code of length over an alphabet of letters. The descendant code of is defined to be the set of words such that for all . is a -separable code if for any two distinct such that , , we always have . The study of separable codes is motivated by questions about multimedia fingerprinting for protecting copyrighted multimedia data. Let be the maximal possible size of such a separable code. In this paper, we provide an improved upper bound for by a graph theoretical approach, and a new lower bound for by deleting suitable points and lines from a projective plane, which coincides with the improved upper bound in some places. This corresponds to the bounds of maximum size of bipartite graphs with girth and a construction of such maximal bipartite graphs.en_US
dc.language.isoen_USen_US
dc.subjectMultimedia fingerprintingen_US
dc.subjectSeparable codeen_US
dc.subject4-Cycle free bipartite graphen_US
dc.subjectZarankiewicz numberen_US
dc.subjectProjective planeen_US
dc.titleNew bounds on (2)over-bar-separable codes of length 2en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10623-013-9849-9en_US
dc.identifier.journalDESIGNS CODES AND CRYPTOGRAPHYen_US
dc.citation.volume74en_US
dc.citation.spage31en_US
dc.citation.epage40en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000347692400003en_US
dc.citation.woscount1en_US
顯示於類別:期刊論文