完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDing, Aidong Adamen_US
dc.contributor.authorHsieh, Jin-Jianen_US
dc.contributor.authorWang, Weijingen_US
dc.date.accessioned2015-07-21T08:28:49Z-
dc.date.available2015-07-21T08:28:49Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1380-7870en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10985-013-9286-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/124244-
dc.description.abstractBivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.en_US
dc.language.isoen_USen_US
dc.subjectMultivariate local polynomial regressionen_US
dc.subjectClayton copulaen_US
dc.subjectNon-informative missing dataen_US
dc.subjectDependent censoringen_US
dc.subjectDependent truncationen_US
dc.titleLocal linear estimation of concordance probability with application to covariate effects models on association for bivariate failure-time dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10985-013-9286-0en_US
dc.identifier.journalLIFETIME DATA ANALYSISen_US
dc.citation.volume21en_US
dc.citation.spage42en_US
dc.citation.epage74en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000347877200003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文