Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Henghsiuen_US
dc.contributor.authorRachinger, Heikoen_US
dc.contributor.authorLin, Edward M. H.en_US
dc.date.accessioned2015-07-21T08:29:12Z-
dc.date.available2015-07-21T08:29:12Z-
dc.date.issued2015-03-01en_US
dc.identifier.issn0303-6898en_US
dc.identifier.urihttp://dx.doi.org/10.1111/sjos.12099en_US
dc.identifier.urihttp://hdl.handle.net/11536/124310-
dc.description.abstractWe consider the Whittle likelihood estimation of seasonal autoregressive fractionally integrated moving-average models in the presence of an additional measurement error and show that the spectral maximum Whittle likelihood estimator is asymptotically normal. We illustrate by simulation that ignoring measurement errors may result in incorrect inference. Hence, it is pertinent to test for the presence of measurement errors, which we do by developing a likelihood ratio (LR) test within the framework of Whittle likelihood. We derive the non-standard asymptotic null distribution of this LR test and the limiting distribution of LR test under a sequence of local alternatives. Because in practice, we do not know the order of the seasonal autoregressive fractionally integrated moving-average model, we consider three modifications of the LR test that takes model uncertainty into account. We study the finite sample properties of the size and the power of the LR test and its modifications. The efficacy of the proposed approach is illustrated by a real-life example.en_US
dc.language.isoen_USen_US
dc.subjectmeasurement erroren_US
dc.subjectmodel uncertaintyen_US
dc.subjectseasonal autoregressive fractionally integrated moving-average modelsen_US
dc.subjectspectral maximum likelihood estimatoren_US
dc.titleInference of Seasonal Long-memory Time Series with Measurement Erroren_US
dc.typeArticleen_US
dc.identifier.doi10.1111/sjos.12099en_US
dc.identifier.journalSCANDINAVIAN JOURNAL OF STATISTICSen_US
dc.citation.volume42en_US
dc.citation.spage137en_US
dc.citation.epage154en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000349982500008en_US
dc.citation.woscount0en_US
Appears in Collections:Articles