Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiu, Chun-Yuanen_US
dc.contributor.authorDai, Tian-Shyren_US
dc.contributor.authorLyuu, Yuh-Dauhen_US
dc.date.accessioned2015-07-21T08:28:57Z-
dc.date.available2015-07-21T08:28:57Z-
dc.date.issued2015-02-01en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2014.12.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/124355-
dc.description.abstractPricing Asian options is a long-standing hard problem; there is no analytical formula for the probability density of its payoff even when the process of the underlying asset follows the simple lognormal diffusion process. It is known that the density function of a discretely-sampled Asian option\'s payoff can be efficiently approximated by the Fast Fourier Transform (FFT). As a result, we can accurately price the option under more general Levy processes. This paper shows that the pricing error of this approach, called the FFT approach, can be decomposed into the truncation error, the integration error, and the interpolation error. We prove that previous algorithms that follow the FFT approach converge quadratically. To improve the error convergence rate, our proposed algorithms reduce the integration error by the higher-order Newton-Cotes formulas and new integration rules derived from the Lagrange interpolating polynomial. The interpolation error is reduced by the higher-order Newton divided-difference interpolation formula. Consequently, our algorithms can be sped up by the FFT to achieve the same time complexity as previous algorithms, but with a faster error convergence rate. Numerical results are given to verify the efficiency and the fast convergence of our algorithms. (c) 2014 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPricingen_US
dc.subjectFast Fourier Transformen_US
dc.subjectAsian optionen_US
dc.subjectNewton-Cotes integration formulaen_US
dc.titlePricing Asian option by the FFT with higher-order error convergence rate under Levy processesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2014.12.002en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume252en_US
dc.citation.spage418en_US
dc.citation.epage437en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000349032500037en_US
dc.citation.woscount0en_US
Appears in Collections:Articles