Full metadata record
DC FieldValueLanguage
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2015-07-21T08:29:25Z-
dc.date.available2015-07-21T08:29:25Z-
dc.date.issued2015-05-01en_US
dc.identifier.issn2329-9290en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TASLP.2015.2412466en_US
dc.identifier.urihttp://hdl.handle.net/11536/124443-
dc.description.abstractThis paper presents the group sparse learning for acoustic models where a sequence of acoustic features is driven by Markov chain and each feature vector is represented by groups of basis vectors. The group of common bases represents the features across Markov states within a regression class. The group of individual basis compensates the intra-state residual information. Laplace distribution is used as the sparse prior of sensing weights for group basis representation. Laplace parameter serves as regularization parameter or automatic relevance determination which controls the selection of relevant bases for acoustic modeling. The groups of regularization parameters and basis vectors are estimated from training data by maximizing the marginal likelihood over sensing weights which is implemented by Laplace approximation using the Hessian matrix and the maximum a posteriori parameters. Model uncertainty is compensated through full Bayesian treatment. The connection of Laplace group sensing to lasso regularization is illustrated. Experiments on noisy speech recognition show the robustness of group sparse acoustic models in presence of different noise types and SNRs.en_US
dc.language.isoen_USen_US
dc.subjectAcoustic modelen_US
dc.subjectbasis representationen_US
dc.subjectgroup sparsityen_US
dc.subjectLaplace distributionen_US
dc.subjectspeech recognitionen_US
dc.titleLaplace Group Sensing for Acoustic Modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TASLP.2015.2412466en_US
dc.identifier.journalIEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSINGen_US
dc.citation.volume23en_US
dc.citation.spage909en_US
dc.citation.epage922en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000352281500009en_US
dc.citation.woscount0en_US
Appears in Collections:Articles