Full metadata record
DC FieldValueLanguage
dc.contributor.authorIkegami, Hirokien_US
dc.contributor.authorAkimoto, Hikotaen_US
dc.contributor.authorKono, Kimitoshien_US
dc.date.accessioned2015-07-21T08:29:24Z-
dc.date.available2015-07-21T08:29:24Z-
dc.date.issued2015-05-01en_US
dc.identifier.issn0022-2291en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10909-014-1272-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/124445-
dc.description.abstractWe discuss melting of a Wigner crystal formed on a free surface of superfluid He, in quasi-one-dimensional (Q1D) channels of width between 5 and 15 m. We reexamine our previous transport data (Ikegami et al. in Phys Rev B 82:201104(R), 2010), in particular, by estimating the number of electrons across the channel in a more accurate way with the aid of numerical calculations of distributions of the electrons in the channels. The results of reexamination indicate more convincingly that the melting of the Wigner crystal in the Q1D geometry is understood by the finite size effect on the Kosterlitz-Thouless-Halperin-Nelson-Young melting process. We also present technical details of the transport measurements of the electrons in a Q1D geometry, including a fabrication method of devices used for the transport measurements, numerical simulations of response of the devices, and a procedure for analyzing transport data.en_US
dc.language.isoen_USen_US
dc.subjectQuasi-one-dimensional systemen_US
dc.subjectTransport measurementen_US
dc.subjectWigner crystalen_US
dc.subjectMeltingen_US
dc.titleMelting of Wigner Crystal on Helium in Quasi-One-Dimensional Geometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10909-014-1272-8en_US
dc.identifier.journalJOURNAL OF LOW TEMPERATURE PHYSICSen_US
dc.citation.volume179en_US
dc.citation.issue3-4en_US
dc.citation.spage251en_US
dc.citation.epage263en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000352211200009en_US
dc.citation.woscount0en_US
Appears in Collections:Articles