完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Meng-Tsanen_US
dc.contributor.authorYang, Zu-Poen_US
dc.contributor.authorJing, Ting-Shivanen_US
dc.contributor.authorHsieh, Hsing-Huaen_US
dc.contributor.authorYao, Yung-Chien_US
dc.contributor.authorLin, Tai-Yuanen_US
dc.contributor.authorChen, Yang-Fangen_US
dc.contributor.authorLee, Ya-Juen_US
dc.date.accessioned2015-07-21T08:29:24Z-
dc.date.available2015-07-21T08:29:24Z-
dc.date.issued2015-05-01en_US
dc.identifier.issn0927-0248en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.solmat.2014.12.019en_US
dc.identifier.urihttp://hdl.handle.net/11536/124447-
dc.description.abstractIn this study, we theoretically and experimentally demonstrate high performance of antireflection (AR) coating composed of the ZnO nanorods (NRs) and TiO2 layers applied on InGaP/GaAs/Ge triple-junction solar cells. The high performance of this AR coating is due to the realization of a smooth gradient profile of refractive index fabricated by only two physical layers. First, due to the inherent inhomogeneous-nanoporous geometry along the surface normal, the ZnO NRs are reasonable to be considered as discrete multiple optical layers with low scattering loss, leading to the index smoothly increasing from air ambient toward down to the solar cells. Second, to compensate the gap of index between ZnO and solar cells, an additional TiO2 layer with index in between is hence necessary to insert under ZnO NRs, significantly further reducing the Fresnel reflection loss of the entire device. The ZnO NRs/TiO2 layer shows a low wavelength-averaged (solar spectrum weighted) reflectance of 6.00% (4.78%) over a wide spectral range of lambda=380-1800 nm, and exhibits a hydrophobic surface with a water contact angle of 128.2 degrees. At device level, we compared the photovoltaic performance of solar cells with and without AR coating, the short-circuit density (J(SC)) is enhanced by 31.8% and 23.8% for solar cells integrated with the ZnO NR5/TiO2 layer and conventional SiO2/TiO2 double-layer AR (DLAR) coating, respectively. Under a very large incident angle of solar illumination (theta=80 degrees), the ZnO NRs/TiO2 layer remains static with J(SC) enhancement of 35.2%, whereas the J(SC) enhancement of conventional DLAR coating drops down to 9.4%. In addition, the ZnO NRs/TiO2 layer barely affects the open-circuit voltage and fill factor of the solar device. Therefore, the proposed ZnO NR5/TiO2 layer with a smoother graded refractive index change is highly promising for the AR coating applications for the next-generation solar cells. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectAntireflection coatingen_US
dc.subjectZinc oxide (ZnO)en_US
dc.subjectNanoroden_US
dc.subjectTriple-junction solar cellen_US
dc.titleAchieving graded refractive index by use of ZnO nanorods/TiO2 layer to enhance omnidirectional photovoltaic performances of InGaP/GaAs/Ge triple-junction solar cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.solmat.2014.12.019en_US
dc.identifier.journalSOLAR ENERGY MATERIALS AND SOLAR CELLSen_US
dc.citation.volume136en_US
dc.citation.spage17en_US
dc.citation.epage24en_US
dc.contributor.department光電系統研究所zh_TW
dc.contributor.departmentInstitute of Photonic Systemen_US
dc.identifier.wosnumberWOS:000351802200003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文