Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Sai-Keungen_US
dc.contributor.authorBaciu, Georgeen_US
dc.date.accessioned2015-07-21T08:29:29Z-
dc.date.available2015-07-21T08:29:29Z-
dc.date.issued2015-04-01en_US
dc.identifier.issn0178-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00371-014-0933-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/124490-
dc.description.abstractIn this paper, we propose a new data structure to perform continuous collision detection (CCD) for deformable triangular meshes. The critical component of this data structure is permissible clusters. At the preprocessing phase, the triangular meshes are divided into permissible clusters. Then, the features of the triangular meshes are assigned to the permissible clusters. At the runtime phase, the potentially colliding feature pairs are collected and they are processed only once in the elementary processing. Our method has been integrated with a normal cone-based method and compared with other CCD methods. Experimental results show that our method improves the overall performance of CCD for deformable objects.en_US
dc.language.isoen_USen_US
dc.subjectVirtual realityen_US
dc.subjectContinuous collision detectionen_US
dc.subjectDeformable objectsen_US
dc.subjectTriangle clustersen_US
dc.titleContinuous collision detection for deformable objects using permissible clustersen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00371-014-0933-6en_US
dc.identifier.journalVISUAL COMPUTERen_US
dc.citation.volume31en_US
dc.citation.spage377en_US
dc.citation.epage389en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000350901600002en_US
dc.citation.woscount0en_US
Appears in Collections:Articles