Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung, Chia-Ien_US
dc.contributor.authorWen, Hua-Chiangen_US
dc.contributor.authorLai, Yao-Chengen_US
dc.contributor.authorChang, Shih-Hsinen_US
dc.contributor.authorChou, Wu-Chingen_US
dc.contributor.authorHsu, Wen-Kuangen_US
dc.date.accessioned2015-07-21T08:29:34Z-
dc.date.available2015-07-21T08:29:34Z-
dc.date.issued2015-03-16en_US
dc.identifier.issn1439-4235en_US
dc.identifier.urihttp://dx.doi.org/10.1002/cphc.201402736en_US
dc.identifier.urihttp://hdl.handle.net/11536/124504-
dc.description.abstractZnO is a defect-governed oxide and emits light at both visible and UV regimes. This work employs atomic layer deposition to produce oxide particles on oxygenated carbon nanotubes, and the composites only show emission profiles at short wavelengths. The quenching of defect-related emissions at long wavelengths is verified, owing to carboxyl diffusion into oxygen vacancies, and doping is supported by ZnCO3 formation in oxide lattice. Fully coated tubes display an increased photocurrent and the quantum efficiency increases by 22% relative to the bare nanotubes.en_US
dc.language.isoen_USen_US
dc.subjectcarbon nanotubesen_US
dc.subjectdefectsen_US
dc.subjectnanostructuresen_US
dc.subjectphotocurrenten_US
dc.subjectzinc oxideen_US
dc.titleZnO-Coated Carbon Nanotubes: Inter-Diffusion of Carboxyl Groups and Enhanced Photocurrent Generationen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/cphc.201402736en_US
dc.identifier.journalCHEMPHYSCHEMen_US
dc.citation.volume16en_US
dc.citation.spage812en_US
dc.citation.epage816en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000351162000015en_US
dc.citation.woscount0en_US
Appears in Collections:Articles