Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, T. N.en_US
dc.contributor.authorHuang, J. C.en_US
dc.contributor.authorShen, J. L.en_US
dc.contributor.authorChu, C. M.en_US
dc.contributor.authorYeh, J. M.en_US
dc.contributor.authorChen-Yang, Y. W.en_US
dc.contributor.authorChiu, C. H.en_US
dc.contributor.authorKuo, H. C.en_US
dc.date.accessioned2015-07-21T08:29:30Z-
dc.date.available2015-07-21T08:29:30Z-
dc.date.issued2015-03-05en_US
dc.identifier.issn1932-7447en_US
dc.identifier.urihttp://dx.doi.org/10.1021/jp5111949en_US
dc.identifier.urihttp://hdl.handle.net/11536/124518-
dc.description.abstractIn this study, we demonstrated a nonradiative energy transfer between InGaN quantum wells (QWs) and polyamidoamine (PAMAM) dendrimers through optical waveguiding by detecting a reduction in the photoluminescence lifetime. The maximum energy transfer efficiency of this system is similar to 72%, which is promising for sensor applications. The energy transfer efficiency depends on the distance between the InGaN QWs and PAMAM dendrimers by a factor of 1/d(2), revealing layer-to-layer dipole interactions. Upon increasing the generation of PAMAM dendrimers, the transfer energy efficiency increases exponentially, which can be explained by the increased surface coverage for the higher generation.en_US
dc.language.isoen_USen_US
dc.titleHybrid Dendrimer/Semiconductor Nanostructures with Efficient Energy Transfer via Optical Waveguidingen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/jp5111949en_US
dc.identifier.journalJOURNAL OF PHYSICAL CHEMISTRY Cen_US
dc.citation.volume119en_US
dc.citation.spage5107en_US
dc.citation.epage5112en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000350840700074en_US
dc.citation.woscount0en_US
Appears in Collections:Articles