Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Yen-Tingen_US
dc.contributor.authorLin, Geng-Heen_US
dc.contributor.authorJiang, Iris Hui-Ruen_US
dc.contributor.authorChiang, Charlesen_US
dc.date.accessioned2015-07-21T08:29:41Z-
dc.date.available2015-07-21T08:29:41Z-
dc.date.issued2015-03-01en_US
dc.identifier.issn0278-0070en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCAD.2014.2387858en_US
dc.identifier.urihttp://hdl.handle.net/11536/124532-
dc.description.abstractBecause of the widening sub-wavelength lithography gap in advanced fabrication technology, lithography hotspot detection has become an essential task in design for manufacturability. Unlike current state-of-the-art works, which unite pattern matching and machine-learning engines, we fully exploit the strengths of machine learning using novel techniques. By combing topological classification and critical feature extraction, our hotspot detection framework achieves very high accuracy. Furthermore, to speed-up the evaluation, we verify only possible layout clips instead of full-layout scanning. We utilize feedback learning and present redundant clip removal to reduce the false alarm. Experimental results show that the proposed framework is very accurate and demonstrates a rapid training convergence. Moreover, our framework outperforms the 2012 CAD contest at International Conference on Computer-Aided Design (ICCAD) winner on accuracy and false alarm.en_US
dc.language.isoen_USen_US
dc.subjectDesign for manufacturabilityen_US
dc.subjectfuzzy pattern matchingen_US
dc.subjecthotspot detectionen_US
dc.subjectlithography hotspoten_US
dc.subjectmachine learningen_US
dc.subjectsupport vector machine (SVM)en_US
dc.titleMachine-Learning-Based Hotspot Detection Using Topological Classification and Critical Feature Extractionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCAD.2014.2387858en_US
dc.identifier.journalIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMSen_US
dc.citation.volume34en_US
dc.citation.spage460en_US
dc.citation.epage470en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000351764500012en_US
dc.citation.woscount0en_US
Appears in Collections:Articles