Full metadata record
DC FieldValueLanguage
dc.contributor.authorYen, Shi-Jimen_US
dc.contributor.authorChou, Cheng-Weien_US
dc.contributor.authorChen, Jr-Changen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorKao, Kuo-Yuanen_US
dc.date.accessioned2015-07-21T08:29:21Z-
dc.date.available2015-07-21T08:29:21Z-
dc.date.issued2015-03-01en_US
dc.identifier.issn1943-068Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCIAIG.2014.2329034en_US
dc.identifier.urihttp://hdl.handle.net/11536/124542-
dc.description.abstractChinese Dark Chess is an old and very popular game in the Chinese culture sphere. This game is a stochastic game with symmetric hidden information. This paper reviews alpha-beta search with chance nodes and proposes heuristics on Chinese Dark Chess programs. We propose an application of nondeterministic Monte Carlo Tree Search with random nodes for tackling partial observation. The proposed methods were implemented in the program Diablo, which won four Chinese Dark Chess tournaments in TAAI 2011/2012, TCGA 2011/2012 computer game tournaments. Diablo also played hundreds of games with different human players and programs based on alpha-beta search. These results show that the nondeterministic MCTS equipped with our heuristics is promising for Chinese Dark Chess.en_US
dc.language.isoen_USen_US
dc.subjectChance nodesen_US
dc.subjectChinese Dark Chessen_US
dc.subjectMonte Carlo Tree Searchen_US
dc.subjectnondeterministic actionsen_US
dc.subjectstochastic gamesen_US
dc.titleDesign and Implementation of Chinese Dark Chess Programsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCIAIG.2014.2329034en_US
dc.identifier.journalIEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMESen_US
dc.citation.spage66en_US
dc.citation.epage74en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000351542300007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles