Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Jyhminen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2015-07-21T08:28:25Z-
dc.date.available2015-07-21T08:28:25Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/124588-
dc.description.abstractLet D = (V, A) be a digraph with the vertex set V and the arc set A. An absorbant of D is a set S subset of V such that for each v is an element of VS, O(v) boolean AND S not equal empty set where O(v) is the out-neighborhood of v. The absorbant number of D, denoted by gamma(a)(D), is defined as the minimum cardinality of an absorbant of D. The generalized de Bruijn digraph G(B)(n,d) is a digraph with the vertex set V(G(B)(n, d)) = {0, 1, 2, ..., n - 1} and the arc set A(G(B)(n, d)) = {(x, y)vertical bar y equivalent to dx + i (mod n),0 <= i < d}. In this paper, we determine gamma(a)(G(B)(n, d)) for all d <= n <= 4d.en_US
dc.language.isoen_USen_US
dc.subjectgeneralized de Bruijn digraphen_US
dc.subjectabsorbant numberen_US
dc.subjectresource location problemen_US
dc.titleThe Absorbant Number of Generalized de Bruijn Digraphsen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume118en_US
dc.citation.spage433en_US
dc.citation.epage443en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000351784600037en_US
dc.citation.woscount0en_US
Appears in Collections:Articles