Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kuo, Jyhmin | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2015-07-21T08:28:25Z | - |
dc.date.available | 2015-07-21T08:28:25Z | - |
dc.date.issued | 2015-01-01 | en_US |
dc.identifier.issn | 0381-7032 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/124588 | - |
dc.description.abstract | Let D = (V, A) be a digraph with the vertex set V and the arc set A. An absorbant of D is a set S subset of V such that for each v is an element of VS, O(v) boolean AND S not equal empty set where O(v) is the out-neighborhood of v. The absorbant number of D, denoted by gamma(a)(D), is defined as the minimum cardinality of an absorbant of D. The generalized de Bruijn digraph G(B)(n,d) is a digraph with the vertex set V(G(B)(n, d)) = {0, 1, 2, ..., n - 1} and the arc set A(G(B)(n, d)) = {(x, y)vertical bar y equivalent to dx + i (mod n),0 <= i < d}. In this paper, we determine gamma(a)(G(B)(n, d)) for all d <= n <= 4d. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | generalized de Bruijn digraph | en_US |
dc.subject | absorbant number | en_US |
dc.subject | resource location problem | en_US |
dc.title | The Absorbant Number of Generalized de Bruijn Digraphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ARS COMBINATORIA | en_US |
dc.citation.volume | 118 | en_US |
dc.citation.spage | 433 | en_US |
dc.citation.epage | 443 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000351784600037 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |