Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Yuh-Jyhen_US
dc.contributor.authorYu, Min-Cheen_US
dc.contributor.authorWang, Hsiang-Anen_US
dc.contributor.authorTing, Zih-Yunen_US
dc.date.accessioned2015-07-21T08:29:45Z-
dc.date.available2015-07-21T08:29:45Z-
dc.date.issued2015-06-01en_US
dc.identifier.issn1041-4347en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TKDE.2015.2391109en_US
dc.identifier.urihttp://hdl.handle.net/11536/124632-
dc.description.abstractNumerous theories and algorithms have been developed to solve vectorial data learning problems by searching for the hypothesis that best fits the observed training sample. However, many real-world applications involve samples that are not described as feature vectors, but as (dis) similarity data. Converting vectorial data into (dis) similarity data is more easily performed than converting (dis) similarity data into vectorial data. This study proposes a stochastic iterative distance transformation model for similarity-based learning. The proposed model can be used to identify a clear class boundary in data by modifying the (dis) similarities between examples. The experimental results indicate that the performance of the proposed method is comparable with those of various vector-based and proximity-based learning algorithms.en_US
dc.language.isoen_USen_US
dc.subjectMachine learningen_US
dc.subjectclassifier design and evaluationen_US
dc.subjectknowledge modelingen_US
dc.subjectdata miningen_US
dc.titleA Similarity-Based Learning Algorithm Using Distance Transformationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TKDE.2015.2391109en_US
dc.identifier.journalIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERINGen_US
dc.citation.volume27en_US
dc.citation.spage1452en_US
dc.citation.epage1464en_US
dc.contributor.department交大工研院聯合研發中心zh_TW
dc.contributor.departmentNCTU/ITRI Joint Research Centeren_US
dc.identifier.wosnumberWOS:000353890600001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles