Full metadata record
DC FieldValueLanguage
dc.contributor.authorWitek, Henryk A.en_US
dc.contributor.authorMos, Grzegorzen_US
dc.contributor.authorChou, Chien Pinen_US
dc.date.accessioned2015-07-21T08:28:24Z-
dc.date.available2015-07-21T08:28:24Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0340-6253en_US
dc.identifier.urihttp://hdl.handle.net/11536/124735-
dc.description.abstractWe present compact, closed-form expressions for Zhang-Zhang (ZZ) polynomials of regular 3- and 4-tier benzenoid strips. It is possible to unify the ZZ polynomials of 11 classes of regular 3- and 4-tier benzenoid strips into a single, universal, three-parameter formula Sigma(Cl)(k=0) Sigma(2)(l=0) a(l) (n +1(k)) (n - l + Cl - k n-1)x(k) where Cl is an element of{2,3,4,5,6}, a(0) = 1, a(1) is an element of{0,1,2,3}, and a(2) is an element of{0,1}. The parameters a(1) and a(2) partition the 3- and 4-tiers benzenoid strips into four superfamilies; a(1) and a(2) are constant within a given superfamily and Cl enumerates subsequent benzenoid structures. Our finding provides also a compact and universal expression for the number of Kekule structures for regular 3- and 4-tier benzenoid strips given by K = Sigma(2)(l=0) a(l)(n - l + Cl Cl) These expressions are expected to be readily applicable also to wider regular benzenoid strips.en_US
dc.language.isoen_USen_US
dc.titleZhang-Zhang Polynomials of Regular 3-and 4-tier Benzenoid Stripsen_US
dc.typeArticleen_US
dc.identifier.journalMATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRYen_US
dc.citation.volume73en_US
dc.citation.spage427en_US
dc.citation.epage442en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000353424200010en_US
dc.citation.woscount0en_US
Appears in Collections:Articles