完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, Yu-Hsiangen_US
dc.contributor.authorHuang, Chung-Yuanen_US
dc.contributor.authorSun, Chuen-Tsaien_US
dc.date.accessioned2015-07-21T08:27:46Z-
dc.date.available2015-07-21T08:27:46Z-
dc.date.issued2015-09-01en_US
dc.identifier.issn0378-4371en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physa.2015.03.042en_US
dc.identifier.urihttp://hdl.handle.net/11536/124752-
dc.description.abstractIdentifying the most influential individuals spreading ideas, information, or infectious diseases is a topic receiving significant attention from network researchers, since such identification can assist or hinder information dissemination, product exposure, and contagious disease detection. Hub nodes, high betweenness nodes, high closeness nodes, and high k-shell nodes have been identified as good initial spreaders. However, few efforts have been made to use node diversity within network structures to measure spreading ability. The two-step framework described in this paper uses a robust and reliable measure that combines global diversity and local features to identify the most influential network nodes. Results from a series of Susceptible-Infected-Recovered (SIR) epidemic simulations indicate that our proposed method performs well and stably in single initial spreader scenarios associated with various complex network datasets. (C) 2015 The Authors. Published by Elsevier B.V.en_US
dc.language.isoen_USen_US
dc.subjectNode diversityen_US
dc.subjectEntropyen_US
dc.subjectSocial network analysisen_US
dc.subjectk-shell decompositionen_US
dc.subjectSIR epidemic modelen_US
dc.titleUsing global diversity and local topology features to identify influential network spreadersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physa.2015.03.042en_US
dc.identifier.journalPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONSen_US
dc.citation.volume433en_US
dc.citation.spage344en_US
dc.citation.epage355en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000355368500036en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文