完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorHuang, Wei-Qiangen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorLiu, Jijunen_US
dc.date.accessioned2015-07-21T08:27:42Z-
dc.date.available2015-07-21T08:27:42Z-
dc.date.issued2015-07-01en_US
dc.identifier.issn0885-7474en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10915-014-9923-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/124759-
dc.description.abstractThe transmission eigenvalue problem, besides its critical role in inverse scattering problems, deserves special interest of its own due to the fact that the corresponding differential operator is neither elliptic nor self-adjoint. In this paper, we provide a spectral analysis and propose a novel iterative algorithm for the computation of a few positive real eigenvalues and the corresponding eigenfunctions of the transmission eigenvalue problem. Based on approximation using continuous finite elements, we first derive an associated symmetric quadratic eigenvalue problem (QEP) for the transmission eigenvalue problem to eliminate the nonphysical zero eigenvalues while preserve all nonzero ones. In addition, the derived QEP enables us to consider more refined discretization to overcome the limitation on the number of degrees of freedom. We then transform the QEP to a parameterized symmetric definite generalized eigenvalue problem (GEP) and develop a secant-type iteration for solving the resulting GEPs. Moreover, we carry out spectral analysis for various existence intervals of desired positive real eigenvalues, since a few lowest positive real transmission eigenvalues are of practical interest in the estimation and the reconstruction of the index of refraction. Numerical experiments show that the proposed method can find those desired smallest positive real transmission eigenvalues accurately, efficiently, and robustly.en_US
dc.language.isoen_USen_US
dc.subjectTransmission eigenvaluesen_US
dc.subjectQuadratic eigenvalue problemsen_US
dc.subjectSymmetric positive definiteen_US
dc.subjectSpectral analysisen_US
dc.subjectSecant-type iteration methoden_US
dc.titleOn Spectral Analysis and a Novel Algorithm for Transmission Eigenvalue Problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10915-014-9923-0en_US
dc.identifier.journalJOURNAL OF SCIENTIFIC COMPUTINGen_US
dc.citation.volume64en_US
dc.citation.spage83en_US
dc.citation.epage108en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000355764000004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文