完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPsaradakis, G.en_US
dc.contributor.authorSpector, D.en_US
dc.date.accessioned2015-07-21T08:27:41Z-
dc.date.available2015-07-21T08:27:41Z-
dc.date.issued2015-07-01en_US
dc.identifier.issn0022-1236en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jfa.2015.04.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/124761-
dc.description.abstractWe consider a multidimensional version of an inequality due to Leray as a substitute for Hardy\'s inequality in the case p = n >= 2. In this paper we provide an optimal Sobolev-type improvement of this substitute, analogous to the corresponding improvements obtained for p = 2 < n in S. Filippas and A. Tertikas (2002) [16], and for p > n >= 1 in G. Psaradakis (2012) [26]. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHardy inequalityen_US
dc.subjectLeray potentialen_US
dc.subjectBorderline Sobolev embeddingen_US
dc.titleA Leray-Trudinger inequalityen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jfa.2015.04.007en_US
dc.identifier.journalJOURNAL OF FUNCTIONAL ANALYSISen_US
dc.citation.volume269en_US
dc.citation.spage215en_US
dc.citation.epage228en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000355239300006en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文