Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Hui-Lingen_US
dc.contributor.authorChen, Li-Fenen_US
dc.contributor.authorChen, I-Tzuen_US
dc.contributor.authorChen, Yong-Shengen_US
dc.date.accessioned2015-07-21T08:27:40Z-
dc.date.available2015-07-21T08:27:40Z-
dc.date.issued2015-07-01en_US
dc.identifier.issn1053-8119en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neuroimage.2015.03.038en_US
dc.identifier.urihttp://hdl.handle.net/11536/124763-
dc.description.abstractFunctional connectivity calculated using multiple channels of electromagnetic brain signals is often over- or underestimated due to volume conduction or field spread. Considering connectivity measures, coherence is suitable for the detection of rhythmic synchronization, whereas temporal correlation is appropriate for transient synchronization. This paper presents a beamformer-based imaging method, called spatiotemporal imaging of linearly-related source component (SILSC), which is capable of estimating connectivity at the cortical level by extracting the source component with the maximum temporal correlation between the activity of each targeted region and a reference signal. The spatiotemporal correlation dynamics can be obtained by applying SILSC at every brain region and with various time latencies. The results of six simulation studies demonstrated that SILSC is sensitive to detect the source activity correlated to the specified reference signal and is accurate and robust to noise in terms of source localization. In a facial expression imitation experiment, the correlation dynamics estimated by SILSC revealed the regions with mirror properties and the regions involved in motor control network when performing the imitation and execution tasks, respectively, with the left inferior frontal gyrus specified as the reference region. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBeamformeren_US
dc.subjectFunctional connectivityen_US
dc.subjectTemporal correlationen_US
dc.subjectMagnetoencephalographyen_US
dc.titleBeamformer-based spatiotemporal imaging of linearly-related source components using electromagnetic neural signalsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neuroimage.2015.03.038en_US
dc.identifier.journalNEUROIMAGEen_US
dc.citation.volume114en_US
dc.citation.epage17en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000355002900001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles