Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yi-Chengen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.contributor.authorHuang, Jiun-Longen_US
dc.contributor.authorLee, Wang-Chienen_US
dc.date.accessioned2015-07-21T08:29:35Z-
dc.date.available2015-07-21T08:29:35Z-
dc.date.issued2015-05-01en_US
dc.identifier.issn2157-6904en_US
dc.identifier.urihttp://dx.doi.org/10.1145/2700484en_US
dc.identifier.urihttp://hdl.handle.net/11536/124825-
dc.description.abstractOwing to the great advent of sensor technology, the usage data of appliances in a house can be logged and collected easily today. However, it is a challenge for the residents to visualize how these appliances are used. Thus, mining algorithms are much needed to discover appliance usage patterns. Most previous studies on usage pattern discovery are mainly focused on analyzing the patterns of single appliance rather than mining the usage correlation among appliances. In this article, a novel algorithm, namely Correlation Pattern Miner (CoPMiner), is developed to capture the usage patterns and correlations among appliances probabilistically. CoPMiner also employs four pruning techniques and a statistical model to reduce the search space and filter out insignificant patterns, respectively. Furthermore, the proposed algorithm is applied on a real-world dataset to show the practicability of correlation pattern mining.en_US
dc.language.isoen_USen_US
dc.subjectAlgorithmsen_US
dc.subjectTheoryen_US
dc.subjectMeasurementen_US
dc.subjectCorrelation patternen_US
dc.subjectsmart homeen_US
dc.subjectsequential patternen_US
dc.subjecttime interval-based dataen_US
dc.subjectusage representationen_US
dc.titleSignificant Correlation Pattern Mining in Smart Homesen_US
dc.typeArticleen_US
dc.identifier.doi10.1145/2700484en_US
dc.identifier.journalACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGYen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000355670300007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles