完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tsai, Chang-Hung | en_US |
dc.contributor.author | Lee, Hui-Hsuan | en_US |
dc.contributor.author | Yu, Wan-Ju | en_US |
dc.contributor.author | Lee, Chen-Yi | en_US |
dc.date.accessioned | 2015-07-21T08:31:31Z | - |
dc.date.available | 2015-07-21T08:31:31Z | - |
dc.date.issued | 2014-01-01 | en_US |
dc.identifier.isbn | 978-1-4799-3432-4 | en_US |
dc.identifier.issn | 0271-4302 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/124892 | - |
dc.description.abstract | This paper proposes a 2 GOPS quad-mean shift processor (Q-MSP) architecture for data clustering and machine learning applications. By exploiting the linear approximation approach and early termination mechanism, the proposed algorithm can reduce 70% and 40% computational complexity, respectively. Moreover, 4 mean shift processor cores are integrated into the proposed architecture to support parallel processing to further improve system performance. Implemented in Xilinx Virtex-7 FPGA, this architecture occupies 65k LUTs and 3.3MB block memory to achieve 2 GOPS throughput operated at 125MHz. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A 2 GOPS Quad-Mean Shift Processor with Early Termination for Machine Learning Applications | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | en_US |
dc.citation.spage | 157 | en_US |
dc.citation.epage | 160 | en_US |
dc.contributor.department | 電機工程學系 | zh_TW |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.identifier.wosnumber | WOS:000346488600038 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |