完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Chang-Hungen_US
dc.contributor.authorLee, Hui-Hsuanen_US
dc.contributor.authorYu, Wan-Juen_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2015-07-21T08:31:31Z-
dc.date.available2015-07-21T08:31:31Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-1-4799-3432-4en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/124892-
dc.description.abstractThis paper proposes a 2 GOPS quad-mean shift processor (Q-MSP) architecture for data clustering and machine learning applications. By exploiting the linear approximation approach and early termination mechanism, the proposed algorithm can reduce 70% and 40% computational complexity, respectively. Moreover, 4 mean shift processor cores are integrated into the proposed architecture to support parallel processing to further improve system performance. Implemented in Xilinx Virtex-7 FPGA, this architecture occupies 65k LUTs and 3.3MB block memory to achieve 2 GOPS throughput operated at 125MHz.en_US
dc.language.isoen_USen_US
dc.titleA 2 GOPS Quad-Mean Shift Processor with Early Termination for Machine Learning Applicationsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)en_US
dc.citation.spage157en_US
dc.citation.epage160en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000346488600038en_US
dc.citation.woscount0en_US
顯示於類別:會議論文