Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Yu-Hsingen_US
dc.contributor.authorKu, Wei-Linen_US
dc.contributor.authorPeng, Wen-Hsiaoen_US
dc.contributor.authorChou, Hung-Chunen_US
dc.date.accessioned2015-07-21T08:31:30Z-
dc.date.available2015-07-21T08:31:30Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-1-4799-3432-4en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/124896-
dc.description.abstractThis paper proposes a global image representation based on Locality-constrained Linear Coding (LLC), with an aim to simplify the encoding process of local descriptors so as to facilitate large-scale image retrieval. Starting from the state-of-the-art Fisher Vector (FV) representation, we replace the computation of sophisticated posterior probabilities with simpler LLC. We then conduct several empirical studies to investigate the effects and benefits of this change and to adapt the other terms in FV for a better trade-off between performance and complexity. The result is a simpler global descriptor that combines the merits of both FV and LLC. Experimental results show that when compared with other similar works, our scheme not only brings performance benefits in mean Average Precision, but also offer complexity advantages.en_US
dc.language.isoen_USen_US
dc.titleGlobal Image Representation Using Locality-constrained Linear Coding for Large-Scale Image Retrievalen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)en_US
dc.citation.spage766en_US
dc.citation.epage769en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000346488600196en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper