Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Yuh-Jyhen_US
dc.contributor.authorLin, Shun-Chienen_US
dc.contributor.authorLin, Yu-Lungen_US
dc.date.accessioned2015-07-21T08:31:12Z-
dc.date.available2015-07-21T08:31:12Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-84-15814-84-9en_US
dc.identifier.issnen_US
dc.identifier.urihttp://hdl.handle.net/11536/124924-
dc.description.abstractOne of the major challenges in the field of vaccine design is to identify the B-cell epitopes in ever-evolving viruses. Various prediction servers have been developed to predict linear or conformational epitopes, each relying on different physicochemical properties and adopting distinct search strategies. We propose meta learning approaches to epitope prediction based on stacked generalization and cascade generalization. By combining the base prediction servers in a hierarchical architecture, we demonstrated that a meta learner outperformed the best single server in predicting the epitopes of an independent dataset of pathogen proteins.en_US
dc.language.isoen_USen_US
dc.subjectepitope predictionen_US
dc.subjectlinearen_US
dc.subjectconformationalen_US
dc.subjectmeta learningen_US
dc.titleApplying Stacked and Cascade Generalizations to B-cell Epitope Predictionen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2en_US
dc.citation.spage1154en_US
dc.citation.epage1163en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.identifier.wosnumberWOS:000346381500120en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper