Full metadata record
DC FieldValueLanguage
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorChang, Ying-Lanen_US
dc.date.accessioned2015-07-21T11:21:59Z-
dc.date.available2015-07-21T11:21:59Z-
dc.date.issued2013-01-01en_US
dc.identifier.isbn978-1-4799-1180-6en_US
dc.identifier.issn2161-0363en_US
dc.identifier.urihttp://hdl.handle.net/11536/124936-
dc.description.abstractThis paper presents a hierarchical summarization model to extract representative sentences from a set of documents. In this study, we select the thematic sentences and identify the topical words based on a hierarchical theme and topic model (H2TM). The latent themes and topics are inferred from document collection. A tree stick-breaking process is proposed to draw the theme proportions for representation of sentences. The structural learning is performed without fixing the number of themes and topics. This H2TM is delicate and flexible to represent words and sentences from heterogeneous documents. Thematic sentences are effectively extracted for document summarization. In the experiments, the proposed H2TM outperforms the other methods in terms of precision, recall and F-measure.en_US
dc.language.isoen_USen_US
dc.subjectTopic modelen_US
dc.subjectstructural learningen_US
dc.subjectBayesian nonparametricsen_US
dc.subjectdocument summarizationen_US
dc.titleHIERARCHICAL THEME AND TOPIC MODEL FOR SUMMARIZATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP)en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000345844100049en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000345844100049.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.