Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chen-Haoen_US
dc.contributor.authorTseng, Li-Chuanen_US
dc.contributor.authorHuang, ChingYaoen_US
dc.date.accessioned2015-07-21T08:31:06Z-
dc.date.available2015-07-21T08:31:06Z-
dc.date.issued2013-01-01en_US
dc.identifier.issn2166-9570en_US
dc.identifier.urihttp://hdl.handle.net/11536/124951-
dc.description.abstractDue to the high demand of spectrum utilization, cognitive radio (CR) network has been a promising solution to the problem of spectrum scarcity by using dynamic spectrum access technique. In this paper, we study one of the CR network architectures where the CR base stations (CRBSs) demand spectrum resources for the CR users to directly access and utilize. We applied an economical Cournot Game model to the system where the CRBSs are the players in this game. In order to optimize the game, we propose a stochastic learning (SL) based scheme for the CRBSs to adjust the demand amount of resources based on the action-reward history. Numerical results show the convergence toward a Nash Equilibrium (NE) point, and the system performs well in terms of the total utility comparing with other schemes.en_US
dc.language.isoen_USen_US
dc.subjectCognitive radio networken_US
dc.subjectCournot gameen_US
dc.subjectStochastic learningen_US
dc.titleCognitive Radio Networks: Game Modeling and Self-organization Using Stochastic Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC)en_US
dc.citation.spage3006en_US
dc.citation.epage3010en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000346481203017en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper