完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorChen, Kai-Juen_US
dc.contributor.authorYang, Jia-Rongen_US
dc.date.accessioned2015-07-21T08:31:11Z-
dc.date.available2015-07-21T08:31:11Z-
dc.date.issued2013-01-01en_US
dc.identifier.isbn978-1-4799-1114-1en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://hdl.handle.net/11536/124960-
dc.description.abstractWe use genetic algorithm (GA) of global optimization method for velocity picking in reflection seismic data. Here, we transfer the velocity picking to a combinatorial optimization problem. The local peaks in time-velocity seismic semblance image are ordered in a sequence with time first, then velocity. We define a fitness function that includes the total semblance of picked points and constraints on the number of picked points, interval velocity, and velocity slope. GA can find an individual with the maximum of fitness function and get the picked points to form the best polyline. We have Nankai real seismic data in the experiments. We use sequential method to find the best parameter settings of GA. The picking result by GA is good and close to the human picking result. The result of velocity picking by GA is used for the normal move-out (NMO) correction and stacking. The stacking result shows that the signal is enhanced. This method can improve the seismic data processing and interpretation.en_US
dc.language.isoen_USen_US
dc.subjectseismic velocity pickingen_US
dc.subjectgenetic algorithmen_US
dc.subjectnormal move-out (NMO) correctionen_US
dc.subjectcommon midpoint (CMP) gatheren_US
dc.subjectsequential methoden_US
dc.titleSEISMIC VELOCITY PICKING BY GENETIC ALGORITHMen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)en_US
dc.citation.spage1548en_US
dc.citation.epage1551en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000345638901169en_US
dc.citation.woscount0en_US
顯示於類別:會議論文