完整後設資料紀錄
DC 欄位語言
dc.contributor.authorMartin, Sebastienen_US
dc.contributor.authorChoi, Charles T. M.en_US
dc.date.accessioned2015-07-21T08:30:52Z-
dc.date.available2015-07-21T08:30:52Z-
dc.date.issued2015-01-01en_US
dc.identifier.isbn978-3-319-12261-8en_US
dc.identifier.issn1680-0737en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-12262-5_49en_US
dc.identifier.urihttp://hdl.handle.net/11536/124979-
dc.description.abstractElectrical Impedance Tomography (EIT) is a non-invasive image reconstruction technique. Typically, an EIT scheme involves the solution to an inverse problem, which usually gives a poor resolution, due to linearization and ill-posedness of the problem. An alternative approach based on Artificial Neural Networks (ANN) has been used as a replacement of the inverse problem, giving correct results without linearizing the problem. However, training an ANN may be time consuming and usually requires a large amount of iterations before achieving a correct answer to the input stimulation. Several studies focused on training ANNs, and Evolutionary Algorithms (EA) gives a faster global convergence. In this paper, a novel approach based on Artificial Neural Networks and Particle Swarm Optimization (PSO) is proposed to improve the training process. A training method based on PSO algorithm achieves a faster global convergence.en_US
dc.language.isoen_USen_US
dc.subjectElectrical impedance tomographyen_US
dc.subjectneural networken_US
dc.subjectparticle swarm optimizationen_US
dc.subjectfinite element methoden_US
dc.subjectinverse problemsen_US
dc.titleElectrical Impedance Tomography: A Reconstruction Method Based on Neural Networks and Particle Swarm Optimizationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-12262-5_49en_US
dc.identifier.journal1ST GLOBAL CONFERENCE ON BIOMEDICAL ENGINEERING & 9TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERINGen_US
dc.citation.volume47en_US
dc.citation.spage177en_US
dc.citation.epage179en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000349915800049en_US
dc.citation.woscount0en_US
顯示於類別:會議論文