完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Lung-Pingen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorChang, Yuan-Yaoen_US
dc.contributor.authorTseng, Wen-Jieen_US
dc.date.accessioned2015-07-21T08:31:26Z-
dc.date.available2015-07-21T08:31:26Z-
dc.date.issued2013-01-01en_US
dc.identifier.isbn978-1-4799-2528-5en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TAAI.2013.84en_US
dc.identifier.urihttp://hdl.handle.net/11536/125132-
dc.description.abstractA game tree search application can be implemented as the malleable parallel jobs that are adapted to various processor allocations. We establish an efficient desktop grid federation to enable the small to mid-sized organizations to perform large-scale game tree search tasks via resource sharing. Due to the uneven task scales of the organizations as well as the dynamic generation/pruning of game tree search tasks, the user credits of the desktop grids may fluctuate dramatically, leading an unstable resource allocation to the hosted applications. This paper shows that stable processor allocation leads to higher efficiency for the parallel tasks. A new brokering algorithm is developed that ensures both fairness and stable resource allocation.en_US
dc.language.isoen_USen_US
dc.subjectDesktop griden_US
dc.subjectGame tree searchen_US
dc.subjectVolunteer computingen_US
dc.titleOn the Efficiency of Executing Diverse Game Tree Search Applications in a Volunteer Computing Federationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/TAAI.2013.84en_US
dc.identifier.journal2013 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage392en_US
dc.citation.epage396en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000353341700070en_US
dc.citation.woscount0en_US
顯示於類別:會議論文