Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, Yu-Hsiangen_US
dc.contributor.authorNjoo, Gunarto Sindoroen_US
dc.contributor.authorLi, Shou-Chunen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.date.accessioned2015-07-21T11:21:53Z-
dc.date.available2015-07-21T11:21:53Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-3-319-13186-3; 978-3-319-13185-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-13186-3_29en_US
dc.identifier.urihttp://hdl.handle.net/11536/125147-
dc.description.abstractWith the population of smart phones, the general trend of human activity inference is prospering under a powerful computation capabilities on modern phones. Such an assistant make users life more convenient and help them prevent from unnecessary interferences. In conventional research, the activity inference problem is considered a classification instance, so in this paper we propose an association-based classifier framework (ACF) that aims at exploring the correlation among collected sensor data. Each data consists of multiple sensor readings with a label, e.g., dining, shopping, working, driving, sporting, and entertaining. Note that ACF caters to the discrete data; as a consequence, the continuous sensor readings are needed to be transformed to some discrete groups. Therefore, we propose an Interval Length-Gini Discretization (LGD) method which considers the groups and misclassified cases to obtain the best hypothesis for a given set of data. After an appropriate discretization, we propose one-cut and memory-iteration-based approach to select a set of useful sensor-value pairs for reducing the model size by removing redundant features and guaranteeing an acceptable accuracy. In the experiments our framework has a good performance on real data set collected from 50 participants in eight months, and a smaller size than the existing classifications.en_US
dc.language.isoen_USen_US
dc.subjectActivity recognitionen_US
dc.subjectSmart phonesen_US
dc.subjectClassificationen_US
dc.subjectAssociative ruleen_US
dc.subjectDiscretizationen_US
dc.subjectFeature selectionen_US
dc.titleAssociative Classification for Human Activity Inference on Smart Phonesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-13186-3_29en_US
dc.identifier.journalTRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MININGen_US
dc.citation.volume8643en_US
dc.citation.spage305en_US
dc.citation.epage317en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000354705300029en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000354705300029.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.