完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yen-Hsuanen_US
dc.contributor.authorChuang, Yi-Taen_US
dc.date.accessioned2015-07-21T11:21:59Z-
dc.date.available2015-07-21T11:21:59Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-3-319-13186-3; 978-3-319-13185-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-13186-3_30en_US
dc.identifier.urihttp://hdl.handle.net/11536/125148-
dc.description.abstractNext generation smartphones have the ability to sense user contexts such as mobility, device wearing position, location, activity, emotion, health condition. Many apps utilize user contexts to provide innovative services, e.g., pedometer, advanced navigation and location based services. Two of the most important user contexts are mobility patterns (still and walk) and device wearing positions (hand, arm, chest, waist and thigh). We call these two user contexts "wearing behavior". In this paper, we propose a 3-stage framework to recognize smartphone wearing behaviors by utilizing sensor data from smartphones. The framework starts with data preprocessing to extract sensor features and generate ground truths. After the data preprocessing, a threshold based finite state machine utilizes the sensor features to determine whether the smartphone is attached or not. Finally, a decision tree model is built based on the ground truth to determine the wearing behaviors. The experiment results show that our approach can achieve 94 % accuracy in average.en_US
dc.language.isoen_USen_US
dc.subjectMobilityen_US
dc.subjectNext generation smartphoneen_US
dc.subjectUser contexten_US
dc.subjectWearing positionen_US
dc.subjectWearing behavioren_US
dc.titlePersonalized Smartphone Wearing Behavior Analysisen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-13186-3_30en_US
dc.identifier.journalTRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MININGen_US
dc.citation.volume8643en_US
dc.citation.spage318en_US
dc.citation.epage328en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000354705300030en_US
dc.citation.woscount0en_US
顯示於類別:會議論文


文件中的檔案:

  1. 000354705300030.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。