Full metadata record
DC FieldValueLanguage
dc.contributor.authorChou, Chien-Lien_US
dc.contributor.authorTsai, Min-Hoen_US
dc.contributor.authorChao, Chien-Hoen_US
dc.contributor.authorLin, Hsiao-Jungen_US
dc.contributor.authorChen, Hua-Tsungen_US
dc.contributor.authorLee, Suh-Yinen_US
dc.contributor.authorHo, Chien-Pengen_US
dc.date.accessioned2015-07-21T11:21:59Z-
dc.date.available2015-07-21T11:21:59Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-3-319-13186-3; 978-3-319-13185-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-13186-3_62en_US
dc.identifier.urihttp://hdl.handle.net/11536/125149-
dc.description.abstractRestaurant search and recommendation system is a very popular service in many countries. In those systems, most of the restaurant information such as restaurant name, address, phone number, and introduction are collected manually. In this paper, we propose a restaurant information extraction method which can automatically extract restaurant information from online reviews of restaurants in blogs. In addition, by calculating TFIDFs of words in blog posts, the hot keywords can be discovered and ranked. For restaurant search, users are allowed to search by keywords, areas, and/or extracted hot keywords. The experimental results show that the proposed method can achieve over 90 % average accuracy of hot keyword extraction and about 95 % mean average precision for restaurant search. In user study, the fact that the proposed system is more useful than Google search in restaurant search is presented.en_US
dc.language.isoen_USen_US
dc.subjectInformation retrievalen_US
dc.subjectOpinion miningen_US
dc.subjectTFIDFen_US
dc.subjectFood and restaurantsen_US
dc.subjectRestaurant searchen_US
dc.titleAutomatic Restaurant Information and Keyword Extraction by Mining Blog Data for Chinese Restaurant Searchen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-13186-3_62en_US
dc.identifier.journalTRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MININGen_US
dc.citation.volume8643en_US
dc.citation.spage700en_US
dc.citation.epage711en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000354705300062en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000354705300062.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.