完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Horng-Horngen_US
dc.contributor.authorShih, Li-Chenen_US
dc.contributor.authorChuang, Len-Huien_US
dc.date.accessioned2015-07-21T08:30:58Z-
dc.date.available2015-07-21T08:30:58Z-
dc.date.issued2013-01-01en_US
dc.identifier.issnen_US
dc.identifier.urihttp://hdl.handle.net/11536/125172-
dc.description.abstractWith rapid increase in the deployment of highdefinition surveillance cameras, the need of efficient video analytics for extracting video objects from high-resolution surveillance videos in real time has become more and more demanding. Conventional background modeling methods, e.g., the Gaussian mixture modeling (GMM), although having long been proven to be effective for foreground object extraction, are actually not efficient enough for the real-time analysis of high-resolution videos. We thus propose a novel background modeling approach using nonparametric histogramming that can derive a holistic, histogram-based background model for each pixel with low computational complexity. Due to the simple algorithm design, the proposed approach can be easily implemented by fixedpoint computation. Without using any accelerator (like CUDA, Intel SIMD, or Intel IPP library), multi-threading or sub-sampling technique, our implementation of the proposed algorithm achieves high efficiency for the processing of 1920x1080 color videos at similar to 18.81 fps on a general computer (Intel Core i7 3.4GHz CPU). In the experimental comparisons, the proposed approach is similar to 3.9 times faster than the GMM, while giving comparable foreground segmentation results.en_US
dc.language.isoen_USen_US
dc.titleEfficient Background Modeling Using Nonparametric Histogrammingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 SEVENTH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC)en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department多媒體工程研究所zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Multimedia Engineeringen_US
dc.identifier.wosnumberWOS:000352861800020en_US
dc.citation.woscount0en_US
顯示於類別:會議論文