Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, HKen_US
dc.contributor.authorChien, WAen_US
dc.date.accessioned2014-12-08T15:17:12Z-
dc.date.available2014-12-08T15:17:12Z-
dc.date.issued2006-03-01en_US
dc.identifier.issn0965-9978en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.advengsoft.2005.05.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/12552-
dc.description.abstractThis study develops an NN typhoon wave model to accurately and efficiently calculate wave heights at a point of interest. Multi-trend simulating transfer functions were first introduced to exemplify the relationship between wave heights and each conceivable input factor by regressive fitting. The proposed NN-MT model can accurately forecast wave peak with an error of less 1.2 m and with time delay within 3 h and can be extended to cover the station besides the original station of interest. (C) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectneural network wave modelen_US
dc.subjecttrend simulationen_US
dc.subjecttransfer functionen_US
dc.subjectpeak wave heighten_US
dc.titleNeural network with multi-trend simulating transfer function for forecasting typhoon waveen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.advengsoft.2005.05.001en_US
dc.identifier.journalADVANCES IN ENGINEERING SOFTWAREen_US
dc.citation.volume37en_US
dc.citation.issue3en_US
dc.citation.spage184en_US
dc.citation.epage194en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000235690500005-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000235690500005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.