完整後設資料紀錄
DC 欄位語言
dc.contributor.author劉慶鴻en_US
dc.contributor.authorLiou, Cing-Hongen_US
dc.contributor.author陳方中en_US
dc.contributor.authorChen, Fang-Chungen_US
dc.date.accessioned2015-11-26T00:55:08Z-
dc.date.available2015-11-26T00:55:08Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070150568en_US
dc.identifier.urihttp://hdl.handle.net/11536/125573-
dc.description.abstract在本論文中,我們利用奈米電漿結構提升堆疊式太陽能電池的效率。在堆疊式太陽能電池中,我們分別使用了P3HT:ICBA以及PBDTTT-C-T:PCBM分別為前後子元件的主動層。因為前子元件的光電流較低,因而限制了整體電池的光電流,而金奈米粒子因可激發出近電場效應而提升光電流,我們將其摻入前主動層而改善串聯結構中前後子元件的電流匹配,在此實驗條件下,我們成功的改善提升堆疊式太陽能電池,光電流部分從9.1mA cm-2提升到10.0 mA cm-2,填充因子從57%提升到59%,整體能量轉換效率大約可提升至9%左右。zh_TW
dc.description.abstractIn this thesis, a general route for enhancing the performance of polymer tandem solar cells using plasmonic nanostructures is proposed. The tandem structure consisted of a P3HT:ICBA blend a PBDTTT-C-T:PCBM mixture as the active layers of the front and back subcells, respectively. Because the front subcell exhibited a lower photocurrent, thereby limiting the overall current of the tandem cell, Au nanoparticles, which can induce plasmonic near-field effects, were added in the active layer of the front subcell to improve the current matching of the two subcells. The photocurrent of the tandem structure was improved from 9.1 to 10.0 mA cm-2, and the fill factor was increased from 57% to 59%, resulting in a high power conversion efficiency of ~9%.en_US
dc.language.isozh_TWen_US
dc.subject以奈米電漿結構增進高分子堆疊式太陽能電池效率zh_TW
dc.subjectPlasmonic Nanostructures for Polymer Tandem Solar Cellsen_US
dc.title以奈米電漿結構增進高分子堆疊式太陽能電池效率zh_TW
dc.titlePlasmonic Nanostructures for Polymer Tandem Solar Cellsen_US
dc.typeThesisen_US
dc.contributor.department光電工程研究所zh_TW
顯示於類別:畢業論文