完整後設資料紀錄
DC 欄位語言
dc.contributor.author潘鈞允en_US
dc.contributor.authorPan, Chun-Yunen_US
dc.contributor.author陳仁浩en_US
dc.contributor.authorChen, Ren-Hawen_US
dc.date.accessioned2015-11-26T00:55:24Z-
dc.date.available2015-11-26T00:55:24Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070161107en_US
dc.identifier.urihttp://hdl.handle.net/11536/125753-
dc.description.abstract近年來液晶顯示器(Liquid Crystal Display, LCD)技術高速發展,在日常生活中液晶顯示器已經無所不在,因為廠商積極的投入資源,液晶顯示器的設計也一直走向提高解析度與反應速率、更逼真的色彩以及更窄邊框為主要發展方向。 本論文的研究主軸是以提升液晶顯示器的色彩飽和度為目標,針對使用量子點增強膜片的背光模組架構以及應用於液晶面板窄邊框模組的方式加以研究,因為目前市場上尚未有採用量子點增強膜片並且應用在小尺寸窄邊框的顯示器產品,希望此研究能給日後想設計高色彩飽和度以及窄邊框的小尺寸液晶模組有所依循。 量子點增強膜片雖然可以有效提升背光模組的色彩範圍,達成廣色域液晶顯示器背光模組的目標,但是卻有材料本身的邊緣量子點失效區以及材料厚度問題需要克服,我們重新設計了一款與習知的背光模組不同的結構與材料,利用背光模組結構有效率的回收邊緣二次光源來達到將量子點與藍光混合成白光,消除模組邊緣藍色漏光現象。 本研究的實驗中,我們發現利用藍光發光二極體晶片激發黃光螢光粉來產生白光,因為黃光螢光粉色純度不足(光頻譜較寬),經過彩色濾光片後,僅能達到CIE 1931 xy 73 %的色彩飽和度,而使用藍光晶片發光二極體,藍色光源透過導光板間接照射於一張使用防水基材封裝已經混合綠色與紅色奈米顆粒的量子點增強膜片,因為光譜較集中在彩色濾光片的中心位置,因此獲得的三原色具有較高的飽和度,色彩飽和度可達到CIE 1931 xy 103 %。 此次實驗設計了一個高色彩飽和度以及窄邊框的小尺寸液晶顯示器光學系統,研究的結果對於提升廣色域液晶顯示器的色彩成像品質以及應用在窄邊框小尺寸液晶模組應有相當的助益,此研究可提供為手機下一世代新產品設計的參考。zh_TW
dc.description.abstractWith the rapid development of liquid crystal display (LCD) technology in recent years, it has become ubiquitous in our lives. Because of considerable industry competition, studies on major technological topics have aimed at improving resolution, response times, color reality, and narrow borders. Thus far, no small-sized display has had a narrow border and quantum-dot enhancement film. This thesis focused on improving the color saturability of an LCD by adopting quantum-dot enhancement film on a liquid crystal monitor (LCM) with a narrow border. In addition, the paper also provides design direction for the high-color saturability and narrow border of a small-sized LCM. Quantum-dot enhancement film is efficient for increasing color range and achieving a wide color gamut for a backlighting unit (BLU); however, corresponding problems such as insufficient area on the boundaries of the quantum-dot enhancement film and material thicknesses still require solutions. In this study, a novel BLU with a special structure and materials was introduced to recycle boundary light and mix it with blue light to produce white light. This approach is helpful for eliminating the phenomenon of blue light leaking from the edge of a BLU. In this study, the initial method of using a blue-chip LED to stimulate yellow phosphor could only reach a color saturability of CIE 1931 (x,y) 73% after collaborative filtering because the color purity of the yellow phosphor was insufficient. However, by using a blue-chip LED to emit a blue light that passed through a light guide plate and then irradiated the quantum-dot enhancement film (which included green and red nanoparticles), the color saturability of the CIE value could meet the specification of CIE 1931 (x,y) 103%. An optical system with high color saturability and a narrow border was designed in this study. The results indicated that the system is helpful for improving the color quality of an LCD with a high color gamut and feasible for applications in a small-sized LCM with a narrow border.en_US
dc.language.isozh_TWen_US
dc.subject廣色域zh_TW
dc.subject窄邊框zh_TW
dc.subject量子點增強膜片zh_TW
dc.subject光頻譜zh_TW
dc.subjectWide color gamuten_US
dc.subjectNarrow borderen_US
dc.subjectQuantum Dot Enhancement Filmen_US
dc.subjectSpectrumen_US
dc.title量子點增強膜應用在窄邊框液晶顯示器模組的色彩飽和度提升之研究zh_TW
dc.titleDesign and Structure of Narrow Border Module Using Quantum Dot Enhancement Filmen_US
dc.typeThesisen_US
dc.contributor.department工學院精密與自動化工程學程zh_TW
顯示於類別:畢業論文