完整後設資料紀錄
DC 欄位語言
dc.contributor.author李佳慧en_US
dc.contributor.authorLee, Chia-Huien_US
dc.contributor.author黃國華en_US
dc.contributor.authorHuang, Guewha Stevenen_US
dc.date.accessioned2015-11-26T00:55:37Z-
dc.date.available2015-11-26T00:55:37Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079952801en_US
dc.identifier.urihttp://hdl.handle.net/11536/125902-
dc.description.abstract物理環境對生物的影響日趨受到重視。相較於化學作用的立即性,物理環境造成的作用及影響,通常是緩慢卻具長遠的影響性,卻常因其無立即性的重大傷害而容易被忽略。本篇研究針對三個常見物理環境進行探討:從固定磁場以及奈米結構,在線蟲以及細胞生物模組中進行測試,探討其造成行為老化,免疫作用以及神經、細胞間交互作用的影響。 第一部分探討的內容主要著墨於:固定磁場所誘發基因分子機制的改變,進而造成健康風險的議題。在高磁場強度以及長時間暴露的組別,可以明顯的觀察到暴露於固定磁場所造成的效應。26個與細胞凋亡、氧化壓力、以及癌症相關的基因,表現量在施測前後有所不同。顯示了固定磁場所造成的效應是全面性的。在本部份研究結果顯示:長時間、低劑量暴露在固定磁場中,可能會造成線蟲產生與細胞凋亡相關的行為衰退現象。 第二部分是探討奈米粒子對人體健康以及環境可能造成的潛在風險。奈米金粒子對免疫系統的影響很少被探討。然而,奈米金粒子造成免疫球蛋白分泌的增加,與奈米金粒子的大小有關,並且在10 nm能獲得最高的效率。在RT-PCR及Western的實驗結果顯示:奈米金粒子造成免疫球蛋白分泌量增加,是藉由blimp1/pax5這條訊息傳遞途徑所調控。在此部分的結果支持我們所提出的假設,奈米金粒子會增進小鼠的體液免疫反應。 第三部分探討奈米結構效應對細胞生理行為,以及細胞與細胞間交互作用的調控影響,但這其中如何進行物質間的交換在學界仍尚未被清楚討論。細胞存活率、細胞型態、細胞骨架的分布、細胞貼附能力、以及交聯網狀的程度,都在本部分與奈米點陣列的大小及培養時間進行實驗與討論。大部分的指標都與奈米點的尺度呈現拋物線的相依性,並且最大值落在50 nm的奈米點。在本部分的結果顯示:奈米結構效應可以用來調控神經膠細胞與心肌細胞的生理行為,並且影響神經膠細胞與神經膠細胞間的交互作用。zh_TW
dc.description.abstractThe physical biological study is becoming important. Comparing with chemical reaction, the physical effects are easily ignored according to its slow but deep and far. This study focuses on the static magnetic fields (SMFs) and nanotopographical-induced responses for the aging, immunity, and nervous interaction in Caenorhabditis elegans, astrocytes, and cardiomyocytes. The first aim of this work was to explore possible health hazards induced by SMFs. The effects of exposure to SMFs were significantly observed. Twenty-six differentially expressed genes among apoptosis-, oxidative stress-, and cancer-related genes were identified, indicating that a global molecular response to SMF treatment occurred. Here we show that long-term and low-dosage exposure to SMF is capable of inducing an apoptosis-mediated behavioral decline in nematodes. Secondly, nanoparticles are potential threats to human health and the environment. The effect of GNPs on the immune system has rarely been examined. The GNPs enhanced IgG secretion in a size-dependent manner, with a peak of efficacy at 10 nm. Evidence from RT-PCR and Western blot experiments confirmed that the GNPs stimulated IgG secretion through the blimp1/pax5 pathway. In conclusion, evidence supports our hypothesis that GNPs enhance humoral immunity in mouse. The third part, nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell viability, morphology, cytoskeleton, adhesion, and syncytium were evaluated. Most parameters exhibited a parabolic relationship with the diameters of the nanodots and maximized at 50 nm. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes and cardiomyocytes.en_US
dc.language.isoen_USen_US
dc.subject奈米物質zh_TW
dc.subject磁場zh_TW
dc.subject免疫反應zh_TW
dc.subject神經交互作用zh_TW
dc.subject行為衰退效應zh_TW
dc.subjectnanomaterialsen_US
dc.subjectmagnetic fielden_US
dc.subjectimmunityen_US
dc.subjectnervous interactionen_US
dc.subjectbehavioral decline processen_US
dc.title奈米物質及磁場在免疫、神經交互作用以及行為衰退效應的物理生物研究zh_TW
dc.titlePhysical biological study for the effect of nanomaterials and magnetic field on the immunity, nervous interaction, and behavioral decline processen_US
dc.typeThesisen_US
dc.contributor.department材料科學與工程學系奈米科技碩博士班zh_TW
顯示於類別:畢業論文