完整後設資料紀錄
DC 欄位語言
dc.contributor.author劉家安en_US
dc.contributor.authorLiu, Chia-Anen_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2015-11-26T00:55:54Z-
dc.date.available2015-11-26T00:55:54Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079922806en_US
dc.identifier.urihttp://hdl.handle.net/11536/126088-
dc.description.abstract令G為一n點的簡單圖,G的譜半徑\rho(G)為G之鄰接矩陣的最大特徵值。對於每個不大於n的自然數l,本論文給出一個用G圖中前l大的點度數所表示之譜半徑可達上界;此上界的應用非常廣泛,如圖的團數、無號拉普拉斯譜半徑、以及廣義r分圖。我們將此證明概念應用於二分圖譜半徑上的研究,而解決以下前人所提的猜想:給定正整數k<p<q+1,在所有從完全二分圖K_{p,q}(兩個分部分別為p點和q點)扣掉k邊後所可能產生的子圖中,擁有最大譜半徑的,為此扣掉的k邊皆和q點分部中的同一點相連。zh_TW
dc.description.abstractLet G be a simple graph of order n. The spectral radius \rho(G) of G is the largest eigenvalue of its adjacency matrix. For each positive integer l at most n, this dissertation gives a sharp upper bound for \rho(G) by a function of the first l vertex degrees in G, which generalizes a series of previous results. Applications of these bounds on the clique number, signless Laplace spectral radius, and generalized r-partite graphs are provided. The idea of the above result also applies to bipartite graphs. Let k,p,q be positive integers with k<p<q+1. We prove a conjecture stating that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph K_{p,q} of bipartition orders p and q by deleting k edges is attained when the deleted edges are all incident on a common vertex which is located in the partite set of order q.en_US
dc.language.isoen_USen_US
dc.subjectzh_TW
dc.subject二分圖zh_TW
dc.subject鄰接矩陣zh_TW
dc.subject譜半徑zh_TW
dc.subject度數列zh_TW
dc.subjectgraphen_US
dc.subjectbipartite graphen_US
dc.subjectadjacency matrixen_US
dc.subjectspectral radiusen_US
dc.subjectdegree sequenceen_US
dc.title圖的譜半徑與度數列之研究zh_TW
dc.titleSpectral radius and degree sequence of a graphen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文