完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 黃嬿蓉 | en_US |
dc.contributor.author | Huang, Yen-Jung | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Weng, Chih-Wen | en_US |
dc.date.accessioned | 2015-11-26T00:55:56Z | - |
dc.date.available | 2015-11-26T00:55:56Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070252226 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/126112 | - |
dc.description.abstract | 對任意實多項式g(x)及相異數所組成的無窮數列a=(a_0, a_1,...),本論文定義一個實數列L_a(g(x),n)。本文研究發現L_a(x^k,n)與某種拉格朗日插值多項式的係數有關,同時也是第二類斯特靈數的推廣。本文進行與數列 L_a(g(x),n) 有關的恆等式及組合結構之研究。 | zh_TW |
dc.description.abstract | For a given real polynomial g(x) and infinite sequence a=(a_0,a_1,...) of distinct real numbers, we define the sequence L_a(g(x),n). We find that L_a(x^k,n) appears in coefficient of a term of some Lagrange's interpolation polynomial, and is also a generalization of the Stirling number of the second kind. Further properties of L_a(g(x),n) related to identities and combinatorial structure are given. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 拉格朗日插值多項式 | zh_TW |
dc.subject | 第二類斯特靈數 | zh_TW |
dc.subject | Lagrange's interpolation polynomial | en_US |
dc.subject | Stirling number of the second kind | en_US |
dc.title | 拉格朗日插值多項式與組合恆等式 | zh_TW |
dc.title | Combinatorial Identities from Lagrange's Interpolation Polynomial | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |