完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃嬿蓉en_US
dc.contributor.authorHuang, Yen-Jungen_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2015-11-26T00:55:56Z-
dc.date.available2015-11-26T00:55:56Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070252226en_US
dc.identifier.urihttp://hdl.handle.net/11536/126112-
dc.description.abstract對任意實多項式g(x)及相異數所組成的無窮數列a=(a_0, a_1,...),本論文定義一個實數列L_a(g(x),n)。本文研究發現L_a(x^k,n)與某種拉格朗日插值多項式的係數有關,同時也是第二類斯特靈數的推廣。本文進行與數列 L_a(g(x),n) 有關的恆等式及組合結構之研究。zh_TW
dc.description.abstractFor a given real polynomial g(x) and infinite sequence a=(a_0,a_1,...) of distinct real numbers, we define the sequence L_a(g(x),n). We find that L_a(x^k,n) appears in coefficient of a term of some Lagrange's interpolation polynomial, and is also a generalization of the Stirling number of the second kind. Further properties of L_a(g(x),n) related to identities and combinatorial structure are given.en_US
dc.language.isoen_USen_US
dc.subject拉格朗日插值多項式zh_TW
dc.subject第二類斯特靈數zh_TW
dc.subjectLagrange's interpolation polynomialen_US
dc.subjectStirling number of the second kinden_US
dc.title拉格朗日插值多項式與組合恆等式zh_TW
dc.titleCombinatorial Identities from Lagrange's Interpolation Polynomialen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文