完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 賴建綸 | en_US |
dc.contributor.author | Lai, Chien-Lun | en_US |
dc.contributor.author | 許義容 | en_US |
dc.contributor.author | Hsu, Yi-Jung | en_US |
dc.date.accessioned | 2015-11-26T00:56:03Z | - |
dc.date.available | 2015-11-26T00:56:03Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079722807 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/126169 | - |
dc.description.abstract | 假設M 是一個體積為無窮之完備黎曼流形, 是在 M 上的一個緊致集. 分別在體積成長跟Ricci 曲率的下界的條件下, 去估計(M \ Omega ) 之第一固有值的上界. 研究方法主要是根據二次微分方程解的漸近行為跟max-min principle 及Bishop 比較定理. | zh_TW |
dc.description.abstract | Let M be a complete Riemannian manifold with infnite volume and be a compact subdomain in M. In this thesis we obtain two upper bound estimates for the first eigenvalue of the Laplacian on the punctured manifold M \ Omega subject to volume growth and lower bound of Ricci curvature, respectively. The proof hinges on asymptotic behavior of solutions of second order differential equations, the max-min principle and Bishop volume comparison theorem. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 第一固有值 | zh_TW |
dc.subject | 完備流形 | zh_TW |
dc.subject | 上界估計 | zh_TW |
dc.subject | complete Riemannian manifolds | en_US |
dc.subject | first eigenvalue | en_US |
dc.subject | upper bound estimates | en_US |
dc.title | 完備流形第一固有值之上界估計 | zh_TW |
dc.title | Upper bounds for the first eigenvalue of the Laplace operator on complete Riemannian manifolds | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
顯示於類別: | 畢業論文 |