Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 黃苓芸 | en_US |
dc.contributor.author | Huang, Ling-Yun | en_US |
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | Weng, Chih-Wen | en_US |
dc.date.accessioned | 2015-11-26T00:56:45Z | - |
dc.date.available | 2015-11-26T00:56:45Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070252209 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/126644 | - |
dc.description.abstract | 簡單圖G上一點v的平均二度數定義為與v相鄰之點的度數平均。度數列和平均二度數列在最大拉普拉斯特徵值上界的應用,已有許多研究成果。若G中所有點的平均二度數皆為k,則G稱為擬k正則圖。在此論文中,我們證明若G為擬k正則圖,則k是整數;進而找出所有擬正則樹。我們也考慮了當G的最大度數為k^2-k的情形,並給出一些基本的結果。最後,我們對於擬3正則圖給出了更多的結果。並且刻畫出所有十個點之內非正則的擬3正則圖。 | zh_TW |
dc.description.abstract | Let v be a vertex in a simple graph G. The average 2-degree of v is the average of degrees of vertices adjacent to v. The applications of the degree and average 2-degree sequences on the upper bounds for the maximum eigenvalue of Laplacian matrix of a graph is studied by many authors. The graph G is called pseudo k-regular if each vertex in G has average 2-degree k. We prove that if G is pseudo k-regular then k is integral. Moreover, all pseudo regular trees are given in this thesis. We also consider the case when the maximum degree of G is k2 | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 圖 | zh_TW |
dc.subject | 鄰接矩陣 | zh_TW |
dc.subject | 拉普拉斯矩陣 | zh_TW |
dc.subject | 度數 | zh_TW |
dc.subject | 平均二度數 | zh_TW |
dc.subject | 擬k正則 | zh_TW |
dc.subject | Graph | en_US |
dc.subject | adjacency matrix | en_US |
dc.subject | Laplacian matrix | en_US |
dc.subject | degree | en_US |
dc.subject | average 2-degree | en_US |
dc.subject | pseudo k-regular | en_US |
dc.title | 圖的度數對之研究 | zh_TW |
dc.title | The degree pairs of a grpah | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |