完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃苓芸en_US
dc.contributor.authorHuang, Ling-Yunen_US
dc.contributor.author翁志文en_US
dc.contributor.authorWeng, Chih-Wenen_US
dc.date.accessioned2015-11-26T00:56:45Z-
dc.date.available2015-11-26T00:56:45Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070252209en_US
dc.identifier.urihttp://hdl.handle.net/11536/126644-
dc.description.abstract簡單圖G上一點v的平均二度數定義為與v相鄰之點的度數平均。度數列和平均二度數列在最大拉普拉斯特徵值上界的應用,已有許多研究成果。若G中所有點的平均二度數皆為k,則G稱為擬k正則圖。在此論文中,我們證明若G為擬k正則圖,則k是整數;進而找出所有擬正則樹。我們也考慮了當G的最大度數為k^2-k的情形,並給出一些基本的結果。最後,我們對於擬3正則圖給出了更多的結果。並且刻畫出所有十個點之內非正則的擬3正則圖。zh_TW
dc.description.abstractLet v be a vertex in a simple graph G. The average 2-degree of v is the average of degrees of vertices adjacent to v. The applications of the degree and average 2-degree sequences on the upper bounds for the maximum eigenvalue of Laplacian matrix of a graph is studied by many authors. The graph G is called pseudo k-regular if each vertex in G has average 2-degree k. We prove that if G is pseudo k-regular then k is integral. Moreover, all pseudo regular trees are given in this thesis. We also consider the case when the maximum degree of G is k2en_US
dc.language.isozh_TWen_US
dc.subjectzh_TW
dc.subject鄰接矩陣zh_TW
dc.subject拉普拉斯矩陣zh_TW
dc.subject度數zh_TW
dc.subject平均二度數zh_TW
dc.subject擬k正則zh_TW
dc.subjectGraphen_US
dc.subjectadjacency matrixen_US
dc.subjectLaplacian matrixen_US
dc.subjectdegreeen_US
dc.subjectaverage 2-degreeen_US
dc.subjectpseudo k-regularen_US
dc.title圖的度數對之研究zh_TW
dc.titleThe degree pairs of a grpahen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文