完整後設資料紀錄
DC 欄位語言
dc.contributor.author余冠群en_US
dc.contributor.authorYu, Kuan-Chunen_US
dc.contributor.author許義容en_US
dc.contributor.authorHsu, Yi-Jungen_US
dc.date.accessioned2015-11-26T00:57:01Z-
dc.date.available2015-11-26T00:57:01Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070252213en_US
dc.identifier.urihttp://hdl.handle.net/11536/126836-
dc.description.abstract在論文中,我們想要建構出次數三之代數極小超曲面M^{n},在單位S^{n+1}上一類的特殊解。這其實也就是在找尋此方程式Σϕiϕijϕj-|∇ϕj|^{2}Δϕ = 0 mod ϕ的特殊解,其中ϕ:R^{n+2}→R是一個三次齊次不可分解多項式。對此,我們就可以用這類特殊解明確的描述在不同維度下,單位球上的極小超曲面。zh_TW
dc.description.abstractIn this thesis, we want to construct a certain class of algebraic minimal hypersurface M^{n} of degree three in the unit sphere S^{n+1}. The idea is to find a class of special solutions to the equation Σϕiϕijϕj-|∇ϕj|^{2}Δϕ = 0 mod ϕ, where ϕ:R^{n+2}→R is a homogeneous irreducible polynomial of degree three. Using these special solutions, we find certain minimal hypersurfaces in explicit form with various dimensions.en_US
dc.language.isoen_USen_US
dc.subject微分幾何zh_TW
dc.subject代數極小超曲面zh_TW
dc.subject均曲率zh_TW
dc.subjectdifferential geometryen_US
dc.subjectalgebraic minimal hypersurfacesen_US
dc.subjectmean curvatureen_US
dc.title單位球上的次數三之代數超曲面zh_TW
dc.titleAlgebraic Hypersurfaces of Degree Three in the Unit Sphereen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文