标题: 新型角形萘并双硒吩分子及其高分子之合成、分子性质与有机太阳能电池及电晶体之应用
Synthesis and Molecular Properties of New Angular-Shaped α-Naphthodiselenophenes and their Donor-Acceptor Copolymers for Organic Photovoltaics and Transistors
作者: 余若涵
Yu, Ruo-Han
郑彦如
Cheng, Yen-Ju
应用化学系分子科学硕博士班
关键字: 硒吩;萘并双硒吩;角形萘并双硒吩分子;角形萘并双硒吩高分子;萘并双硒吩高分子合成;萘并双硒吩合成;selenophene;Naphthodiselenophenes;Angular-Shaped α-Naphthodiselenophenes;Synthesis of Naphthodiselenophenes;Synthesis of Donor-Acceptor Copolymers;Molecular Properties of Donor-Acceptor Copolymers
公开日期: 2015
摘要: 本论文成功地设计并合成出一种新颖的 4,9-双烷基角形萘并双硒吩分子 4,9-dialkyl angular-shaped α-naphthodiselenophenes (4,9-dialkyl α-aNDS),可以利用有效且直接的方式,由两边硒吩 3 号位置都接上炔基碳链的烯类化合物,在硷性条件下进行两次 6π-电子环化,此反应具有良好的位向专一性,能够将角形萘并双硒吩的 4 和 9 号位置引入碳链,得到 4,9-dialkyl α-aNDS,最后,再分别进行锡化反应,可得到单体 2,7-distannyl-4,9-didodecyl angular-shaped α-naphthodiselenophene (Sn-α-aNDS-C12) 及 2,7-distannyl-4,9-bis(2-butyloctyl) angular-shaped α-naphthodiselenophene (Sn-α-aNDS-BO)。将单体分别与含有不同侧链的 DTFBT-HD (5,6-difluoro-4,7-bis(4-(2-hexyldecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole)、DTFBT-BO (4,7-bis(4-(2-butyloctyl)thiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole)、DPP-OD (2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione)、TT-C12 (4,4'-didodecyl-2,2'-bithiophene) 及 DTFBT-C12 (4,7-bis(4-dodecylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole),在钯金属催化下,进行Stille 聚合反应,可以得到一系列交错型低能隙高分子 PaNDSDTFBT-HD、PaNDSDTFBT-BO、PaNDSDPP-OD、PaNDSTT-C12 与 PaNDSDTFBT-C12,另外,本实验室先前研究之 2,7-distannyl-4,9-didodecyl angular-shaped α-naphthodithiophene (Sn-α-aNDT-C12) 与 Br-DTFBT-HD 进行聚合反应后,还可得到 PaNDTDTFBT-HD,最后探讨这六种共轭高分子之性质,并应用于有机太阳能电池及有机场效电晶体元件上。
此六种共轭高分子材料的分子量与溶解度都有很大的差异,可能是受到电子予体及受体的结构及侧链所影响。α-aNDS 系列高分子之热裂解温度皆高于 400 oC,良好的热稳定性利于元件制作及应用。而高分子的光学能隙值大小依序为:PaNDSDPP-OD (1.39 eV) < PaNDSDTFBT-HD (1.60 eV) < PaNDSDTFBT-C12 (1.64 eV) < PaNDSDTFBT-BO (1.66 eV) < PaNDTDTFBT-HD (1.68 eV) < PaNDSTT-C12 (2.08 eV),明显受到高分子内受体单元的拉电子效应所影响,且予体单体之光学能隙 α-aNDS-C12 (3.28 eV) 小于 α-aNDT-C12 (3.35 eV),也应证了含有硒吩的材料会较易形成醌型结构,拥有较低的能隙值,造成吸收较红移。而电化学能隙值的趋势与光学能隙值相符,并且所有高分子之 HOMO 能阶都低于 -5.3 eV,代表此六个材料在大气下具有相当的稳定性。
本研究所合成的六种共轭高分子材料应用于 bottom-gate 与 bottom-contact 元件结构的有机场效电晶体 (organic field effect transistors, OFETs) 上,PaNDSDTFBT-HD 的电洞迁移率为 0.16 cm2 V-1 s-1,稍微高于 PaNDTDTFBT-HD 的 0.12 cm2 V-1 s-1,另外,高分子材料 PaNDSDPP-OD 应用于 OFET 元件,迁移率有 0.14 cm2 V-1 s-1,若改用 bottom-gate 与 top-contact 的方式,还能拥有 α-aNDS 系列高分子中最高的电洞迁移率 0.47 cm2 V-1 s-1。而应用于有机太阳能电池上,PaNDTDTFBT-HD 在加入添加剂 10 vol % 的硫化二苯基 (diphenyl sulfide, DPS) 后,能帮助高分子与碳球 PC71BM 均匀混合于溶液中,使相同分子间的聚集减少,并协助分子排列,而形成表面型态良好且膜厚适当的元件主动层,因此拥有不错的开路电压值 (Voc) 0.78 V、短路电流值 (Jsc) −12.21 mA/cm2 及填充因子 (FF) 62.7 %,所以得到此系列高分子最高的光电转换效率 6 %,因此我们相信 α-aNDS 具有潜力成为有机半导体材料之重要单体,能够成就高效率的高分子太阳能电池及有机场效电晶体。
We have developed a useful synthetic strategy to successfully prepare 4,9-dialkyl angular-shaped α-naphthodiselenophenes (4,9-dialkyl α-aNDS) molecules where the angular geometry of the fused selenophenes and the position of two aliphatic chains on the central naphthalene core can be regiospecifically controlled. The diselenophenyl-ene-diyne precursor underwent base-induced double 6π-cyclization to construct the central naphthalene moieties with the alkyl chains specifically at the 4,9-positions. The 4,9-dialkyl α-aNDS were doubly lithiated by n-butyllithium followed by treatment with trimethyltin chloride, yielding 2,7-distannyl-4,9-didodecyl angular-shaped α-naphthodiselenophene (Sn-α-aNDS-C12) and 2,7-distannyl-4,9-bis(2-butyloctyl) angular-shaped α-naphthodiselenophene (Sn-α-aNDS-BO) monomers, respectively. Two monomers were copolymerized with DTFBT-HD (5,6-difluoro-4,7-bis(4-(2-hexyldecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole), DTFBT-BO (4,7-bis(4-(2-butyloctyl)thiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole), DPP-OD (2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione), TT-C12 (4,4'-didodecyl-2,2'-bithiophene), and DTFBT-C12 (4,7-bis(4-dodecylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole) monomers by the Stille coupling to give PaNDSDTFBT-HD, PaNDSDTFBT-BO, PaNDSDPP-OD, PaNDSTT-C12, and PaNDSDTFBT-C12, respectively. For comparison, a thiophene-based analogue, 2,7-distannyl-4,9-didodecyl angular-shaped α-naphthodithiophene (Sn-α-aNDT-C12) monomer, was copolymerized with DTFBT-HD monomer to afford PaNDTDTFBT-HD.
The differences of the donor-acceptor structures play a key role in determining electronic/steric and intermolecular/intramolecular properties associated with the device characteristics. The α-aNDS-based copolymers showed good thermal stability with high decomposition temperatures (Td) over 400 oC. The optical band gaps (Eg opt) of polymers and monomers are in the following order: PaNDSDPP-OD (1.39 eV) < PaNDSDTFBT-HD (1.60 eV) < PaNDSDTFBT-C12 (1.64 eV) < PaNDSDTFBT-BO (1.66 eV) < PaNDTDTFBT-HD (1.68 eV) < PaNDSTT-C12 (2.08 eV), and α-aNDS-C12 (3.28 eV) < α-aNDT-C12 (3.35 eV). The tendency of Eg opt showed that the electron-withdrawing ability of the acceptors influences the band gap of copolymers. Selenium-based materials have the more quinoidal character and less tendency of twisting than sulfur-based materials, resulting in a smaller band gap and more red-shifted absorbance. The organic field effect transistor (OFET) mobilities of the copolymers were measured by the devices with a bottom-gate/bottom-contact configuration. The hole mobilities of the PaNDSDTFBT-HD, PaNDTDTFBT-HD and PaNDSDPP-OD device were estimated to be 0.16, 0.12 and 0.14 cm2 V-1 s-1, respectively. Moreover, the PaNDSDPP-OD device with a bottom-gate/top-contact configuration possesses a highest hole mobility up to 0.47 cm2 V-1 s-1, which is attributed to the strong intermolecular interaction of the polymer associated with the rigid and coplanar structure of the α-aNDS and DPP units. The bulk heterojunction solar cell using PaNDSDTFBT-HD:PC71BM blend with 10 vol % diphenyl sulfide (DPS) as the additive delivered a Voc of 0.78 V, a Jsc of −12.21 mA/cm2, an FF of 62.7%, and a high power conversion efficiency (PCE) of 6.00% in the inverted architecture. These preliminary results demonstrated that the α-aNDS is a promising building block to construct new generation of materials for high-performance solar cell and transistor applications.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070252408
http://hdl.handle.net/11536/126947
显示于类别:Thesis