標題: 具氧化鋅奈米線-苝苯亞醯胺衍生物之複合式N型有機薄膜電晶體
Zinc Oxide Nanowire-Perylene Diimide Derivatives for Composite N-type Organic-Based Field Effect Transistor
作者: 陳世平
Chen, Shih-Ping
謝建文
Hsieh, Chien-Wen
照明與能源光電研究所
關鍵字: 氧化鋅;奈米線;有機薄膜電晶體;ZnO;Nanowire;OFET
公開日期: 2015
摘要: 有機薄膜電晶體相較於傳統無機電晶體,製程溫度較低(<100 oC),且可大面積製造,減少製程成本,已經顯露出取代原本無機電晶體的潛力。而N型有機相較於P型有機落後,因而研究學者開始往N型有機半導體方面努力發展。本論文以CVD法成長氧化鋅奈米線,期望加入於N型有機半導體 來形成複合式薄膜電晶體,提升其特性。這裡的N型有機電晶體有機材料使用PDIF-CN2,因其相較於其他N型材料有較好的特性(0.15 cm2/Vs)及空氣穩定性。實驗比較複合與純薄膜電晶體的特性,此複合式薄膜電晶體相較於純薄膜電晶體,載子傳輸電流高出3~4倍(1.2x10-4 A-> 4x10-4 A),而載子移動率提升了2~3倍(0.17 cm2/Vs-> 0.5 cm2/Vs)。
Organic thin film transistors witch had low temperature process (<100 oC) , large area manufacturing and low cost compared to FET and have revealed a great potential to substitute inorganic thin film transistors. P-type organic semiconductor technology has been rather developed than N-type organic semiconductor therefore researchers have started the study for N-type organic semiconductor. The thesis use CVD to grow ZnO nanowires and hope to add into N-type organic thin film transistors to form Composite thin film transistors in order to enhance properties. Here we use PDIF-CN2 as our N-type organic semiconductor material because it had better property (0.15 cm2/Vs)and air-stable than other N-type materials. Our study combine Zinc oxide nanowires with an N-type organic semiconductor as composite OTFTs and compare their electrical performance with pristine OTFTs. The composite OTFT’s carrier current is three to four times (1.2x10-4 A-> 4x10-4 A) higher than that of pristine OTFT and current mobility is enhanced by two to three times (0.17 cm2/Vs->0.5 cm2/Vs).
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070158102
http://hdl.handle.net/11536/127068
顯示於類別:畢業論文